THE INFLUENCE OF LOCUS OF CONTROL AND INDUSTRY WORK PRACTICE TO WORK READINESS

Andini Kusumaningsih¹, Dedi Purwana², Suherdi³

¹ Faculty of Economic, State University of Jakarta
²,³ Lecturer at the Faculty of Economic, State University of Jakarta

E-mail: ¹ andinikusumaningsih@gmail.com

Abstract

Locus of control refers to an individual’s belief in their ability to control and influence outcomes in their lives. It can be categorized as internal (personal control) or external (attributing outcomes to external factors). This study aims to investigate the impact of locus of control and industrial work practices on work readiness among twelfth-grade students at SMKN 50 Jakarta.

The study uses a quantitative approach with multiple linear regression analysis using IBM SPSS 24.0 software. A Likert scale questionnaire is used for the survey method. The accessible population for the study is 211 students, with a sample size of 138 students determined using the Slovin formula and a 5% margin of error. Proportionate stratified random sampling is used as the sampling technique. The data analysis procedure includes: 1.) Analysis of test requirements through normality and reliability tests; 2.) Examination of classical assumptions involving tests for multicollinearity and heteroscedasticity; 3.) Multiple regression analysis; 4.) Hypothesis testing using the F-test and T-test; and 5.) Evaluation of the coefficient of determination. The findings show a positive and significant influence between locus of control, industrial work practices, and job readiness. The coefficient of determination indicates that 41.0% of the variability is explained by the variables studied, while the remaining 59% is influenced by external factors beyond the scope of this study.

Keywords: Industry Work Practice, Locus of Control, Work Readiness

1. INTRODUCTION

The current economic growth presents challenges, particularly in the job market, which has become increasingly competitive. The need for higher skill levels has become a benchmark for individuals entering the workforce. However, job opportunities remain scarce despite an abundance of human resources, leading to inequality and a concerning unemployment rate. According to a report by Tempo.co, Vocational High School (SMK) graduates experienced the highest unemployment rate in 2022 compared to other educational levels. The unemployment rate for SMK graduates stood at 9.42%, surpassing that of high school graduates at 8.57% (Javier, 2023).

The job readiness of SMK students is crucial as vocational education aims to produce graduates who are prepared for employment and possess the necessary skills to create job opportunities and foster entrepreneurship. Various factors influence the level of job readiness, including internal and external sources. Internal factors, as identified by Sukardi, encompass intelligence, talent, interests, attitudes, individual personality, and skills, while external factors, highlighted by Winkel, include population conditions, socio-economic environment, family support, and school support (Sari et al., 2020).
Observations suggest that locus of control and internships or industrial work experience are significant areas where students lack confidence in their job readiness. A study by Kris Yuan Hidayatulloh, Aftoni, and Mohamad Alfin Hilmi (2021) titled "Influence of Locus of Control and Industrial Work Experience on Job Readiness of SMK YPM 8 Sidoarjo Students" concluded that there is a positive and significant correlation between locus of control, industrial work experience, and job readiness among SMK YPM 8 Sidoarjo students.

Another related study conducted by Wiharja (2019) titled "Influence of Industrial Work Experience and Internal Locus of Control on Job Readiness of Vocational High School Students: A Case Study of Students at SMKN 3 Meulaboh" found that industrial work experience and internal locus of control, when considered together, significantly influence job readiness among students at SMKN 3 Meulaboh.

The aim of this study is to examine the influence of locus of control and industrial work practices on work readiness among twelfth-grade students at SMKN 50 Jakarta. By investigating these factors, the study seeks to contribute to the understanding of the challenges and opportunities faced by vocational high school students during their transition to the workforce. The findings of this research can provide valuable insights for educators, policymakers, and stakeholders in improving vocational education programs, enhancing students' job readiness, and addressing the existing gaps in the labor market. Additionally, it can shed light on the importance of nurturing a sense of control and providing practical work experiences for students to better prepare them for the demands of the job market. Ultimately, this study aims to contribute to the overall goal of reducing unemployment rates and promoting economic growth by equipping students with the necessary skills and confidence to succeed in their future careers.

2. LITERATURE REVIEW

2.1. Work Readiness

According to Dalyono (2005), readiness encompasses both physical and mental abilities. Physical readiness refers to having good energy and health, while mental readiness entails possessing sufficient interest and motivation to engage in an activity. Additionally, Zulaehah et al. (2018) highlight that work readiness is characterized by the alignment of physical, mental, and experiential maturity, enabling individuals to take specific actions in the context of work. Another study by Suryadi emphasizes that work readiness involves a person's ability to perform work efficiently, overcoming obstacles, and achieving predetermined goals (Syarif et al., 2019).

2.2. Locus of Control

Agus Bandiyono (2022) defines locus of control as an individual's belief about the factors determining their behavior and the extent to which they believe they have control over their own destiny. Furthermore, Atwarer (cited in Faizah et al., 2023) explains that locus of control represents an individual's confidence in their ability to influence events, both internal and external. Rotter's work reveals that individuals who perceive and believe that their actions directly influence outcomes are categorized as having an internal locus
of control. On the other hand, when individuals attribute events to chance, luck, or fate, this reflects an external locus of control (de Dios-Duarte et al., 2022).

2.3. Industrial Work Practice

Renaningtyas et al. (2021) define industrial work practice as a program that exposes vocational high school students to the realities of the work/industry environment, facilitated through activities provided by businesses or industries. Furthermore, Djokonorganoro (cited in Ahkyat et al., 2019) emphasizes that industrial work practice is an educational program that combines classroom learning with the acquisition of skills through real-world business/industry experiences, ultimately enhancing the quality of graduates.

3. RESEARCH METHODS

This study employs a quantitative research approach. The population for this study consists of all twelfth-grade students at SMKN 50 Jakarta, totaling 211 students. The sample size was determined using the Slovin formula, resulting in a sample of 138 students. The sampling technique utilized was proportionate stratified random sampling.

Primary data was collected and utilized for this research. The primary data was gathered through a survey method using a questionnaire with a Likert scale. The questionnaires were administered, collected, and subsequently subjected to various tests, including instrument validity and reliability tests, analysis requirements tests such as normality and reliability tests, and classical assumption tests to assess multicollinearity and heteroscedasticity. Hypothesis testing was conducted using the F-test, T-test, and coefficient of determination.

4. RESULTS AND DISCUSSION

4.1. Research Results

4.1.1. Normality Test

<table>
<thead>
<tr>
<th>Table 1. Normality Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Sample Kolmogorov-Smirnov Test</td>
</tr>
<tr>
<td>Unstandardized Residual</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Normal Parameters</td>
</tr>
<tr>
<td>Std. Deviation</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Test Statistic</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
</tr>
</tbody>
</table>

The results of the Normality Test, calculated using SPSS 24.0, are presented in the table. The value obtained for the Test Kolmogorov-Smirnov (Asymp. Sig) is 0.200, which is greater than
the significance level of 0.05. This indicates that the data follows a normal distribution and meets the assumption of normality for the statistical analysis.

![Figure 1. Normality Test (Probability Plot)](image)

In the probability plot graph, the data points are scattered around and closely follow the diagonal line. This indicates that the data is normally distributed and satisfies the assumption of normality. As a result, the data fulfills the requirements for conducting parametric statistical tests.

4.1.2. Linearity Test

The linearity test was conducted to assess the relationship between the variables. The results indicate that the Sig Deviation from Linearity value for the locus of control variable with work readiness is 0.692, which is greater than the significance level of 0.05. Similarly, for the industrial work practice variable with work readiness, the Sig Deviation from Linearity value is 0.014, also exceeding the significance level of 0.05. Therefore, it can be concluded that both variables, locus of control and industrial work practices (X2), exhibit a linear relationship and meet the assumption of linearity with the work readiness variable (Y).

4.1.3. Multicollinearity Test

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>25.912</td>
<td>4.744</td>
<td>5.462</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Locus of Control (X1)</td>
<td>.407</td>
<td>.128</td>
<td>.237</td>
<td>3.187</td>
<td>.002</td>
</tr>
<tr>
<td>Industrial Work Practices (X2)</td>
<td>.763</td>
<td>.114</td>
<td>.497</td>
<td>6.701</td>
<td>.000</td>
</tr>
</tbody>
</table>

The variables, locus of control (X1) and industrial work practices (X2), have obtained tolerance values of 0.793 (> 0.10) and VIF (Variance Inflation Factor) values of 1.262 (< 10.00). These results indicate that there are no multicollinearity issues with the two independent variables. Consequently, the regression model demonstrates a linear relationship with the dependent variable, work readiness (Y).
4.1.4. Heteroscedasticity Test

![Figure 2. Heteroscedasticity Test (Scatterplot)](image)

The Sig Unstandardized Residual values for the Spearman's rho test are as follows: for the locus of control variable (X1), the value is 0.922 (> 0.05), and for the industrial work practice variable (X2), the value is 0.483 (> 0.05). Additionally, when examining the scatterplot, the dots are spread above and below the number 0 on the Y axis without forming a discernible pattern. Based on these findings, it can be concluded that there is no heteroscedasticity issue. Thus, the residual data or variability is constant, fulfilling the criteria of Homoscedasticity.

4.1.5. Multiple Linear Regression Test

<table>
<thead>
<tr>
<th>Coefficientsa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>25.912</td>
<td>4.744</td>
<td>5.462</td>
<td>.000</td>
</tr>
<tr>
<td>Locus of Control (X1)</td>
<td>.407</td>
<td>.128</td>
<td>.237</td>
<td>3.187</td>
</tr>
<tr>
<td>Industry Work Practice (X2)</td>
<td>.763</td>
<td>.114</td>
<td>.497</td>
<td>6.701</td>
</tr>
</tbody>
</table>

In reference to the regression equation provided, it is observed that the constant value is 25.912. This indicates that when the values of locus of control (X1) and industrial work practices (X2) for students are both zero, the predicted work readiness (Y) value is 25.912. In other words, if twelfth-grade students at SMKN 50 Jakarta lack locus of control and have inadequate exposure to industrial work practices, their work readiness is likely to be low.

4.1.6. F-Test

<table>
<thead>
<tr>
<th>ANOVAa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>2616.555</td>
<td>2</td>
<td>1308.278</td>
<td>47.000</td>
<td>.000b</td>
</tr>
<tr>
<td>Residual</td>
<td>3757.850</td>
<td>135</td>
<td>27.836</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6374.406</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The F-table value at a significance level of 5% is determined to be 3.06. Based on the calculations, the obtained F-statistic value is 47.000, which is greater than the F-table value. Furthermore, the Sig value of 0.000 is less than 0.05. As a result, it can be concluded that the three variables—locus of control (X1) and industrial work practices (X2)—simultaneously have a significant effect on the work readiness variable (Y).

4.1.7. T-Test

<table>
<thead>
<tr>
<th>Coefficientsa</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>25.912</td>
<td>4.744</td>
<td></td>
<td>5.462</td>
<td>.000</td>
</tr>
<tr>
<td>Locus of Control (X1)</td>
<td>.407</td>
<td>.128</td>
<td>.237</td>
<td>3.187</td>
<td>.002</td>
</tr>
<tr>
<td>Industry Work Practice (X2)</td>
<td>.763</td>
<td>.114</td>
<td>.497</td>
<td>6.701</td>
<td>.000</td>
</tr>
</tbody>
</table>

The T-table value at a significance level of 5% is determined to be 1.656. Based on the calculations, for the locus of control variable (X1), the T-statistic value is 3.187, which is greater than the T-table value, and the Sig value is 0.002, which is less than 0.05. Similarly, for the industrial work practices variable (X2), the T-statistic value is 6.701, exceeding the T-table value, and the Sig value is 0.000, which is also less than 0.05. Therefore, it can be concluded that both independent variables, locus of control (X1) and industrial work practices (X2), have a significant effect on the dependent variable of work readiness (Y) partially.

4.1.8. Coefficient of Determination

<table>
<thead>
<tr>
<th>Model Summaryb</th>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.641a</td>
<td>.410</td>
<td>.402</td>
<td>5.276</td>
<td></td>
</tr>
</tbody>
</table>

The coefficient of determination (R2) obtained for the influence between the variables of locus of control (X1) and industrial work practices (X2) on work readiness (Y) is 0.410 or 41.0%. This value falls within the category of reasonably strong influence as it lies in the range of 0.400 – 0.599. However, it is essential to note that 59.0% of the variation in work readiness (Y) is still influenced by other variables or factors not included in this study.

4.2. Discussion

4.2.1. The Influence of Locus of Control on Work Readiness

In this study, we examined the relationship between locus of control and work readiness. Locus of control refers to an individual's belief in their ability to control events and outcomes in their life. Work readiness, on the other hand, refers to the level of preparedness and readiness of individuals to enter the workforce.
The direct effect analysis between locus of control (X1) and work readiness (Y) variables revealed interesting findings. The T-statistic value obtained was 3.187, which surpassed the critical T-table value of 1.656. Additionally, the Sig value (p-value) was calculated to be 0.002, which is less than the significance level of 0.05 commonly used in statistical analysis. These results indicate a direct and significant influence of locus of control on work readiness, thereby confirming the acceptance of hypothesis H1.

The findings of this study suggest that students with a higher level of locus of control, particularly those with a strong internal locus of control, are more likely to demonstrate higher levels of work readiness. This aligns with previous research conducted by Setiawan & Yusnaini (2021), Jayanti et al. (2021), Sholikah & Muhyadi (2021), and Cholik et al. (2022). These studies also reported a positive and significant influence of locus of control on work readiness.

Overall, the results indicate that individuals who believe they have control over their own lives and outcomes are more likely to exhibit a greater sense of readiness to enter the workforce. This suggests that interventions aimed at developing and enhancing locus of control beliefs among students could potentially improve their work readiness and increase their chances of success in the job market.

4.2.2. The Influence of Industrial Work Practice on Work Readiness

In this section, we explored the relationship between industrial work practice and work readiness. Industrial work practice refers to the practical experience and exposure that students gain through engaging in work-related activities in real industrial settings. Work readiness, as mentioned before, represents the level of preparedness and readiness of individuals to enter the workforce.

The direct effect analysis between industrial work practice (X2) and work readiness (Y) variables yielded compelling results. The T-statistic value obtained was 6.701, which greatly exceeded the critical T-table value of 1.656. Additionally, the Sig value (p-value) was calculated to be 0.000, which is well below the significance level of 0.05. These findings establish a direct and significant influence of industrial work practice on work readiness, providing strong support for the acceptance of hypothesis H2.

The results suggest that students who approach industrial work practice seriously and actively participate in work-related activities in authentic industrial settings are more likely to exhibit higher levels of work readiness. In other words, the practical experience gained through industrial work practice positively impacts their readiness to enter the workforce. This finding is consistent with previous research conducted by Romdloniyati (2019), Putri & Sutarto (2018), and Setyadi et al. (2021), all of whom reported a positive and significant influence of industrial work practice on work readiness.

Overall, the evidence highlights the importance of incorporating industrial work practice opportunities into educational curricula. By doing so, educational institutions can help students develop essential skills, knowledge, and attitudes required for successful transitions into the workforce. These practical experiences can enhance their work readiness and better equip them to tackle the challenges of their future careers. Policymakers and educators should consider the implications of these findings and work towards implementing effective strategies to integrate industrial work practice into educational programs to foster work readiness among students.
4.2.3. The Influence of Locus of Control and Industrial Work Practice on Work Readiness

In this section, we also examined the combined effect of locus of control and industrial work practice on work readiness. Locus of control refers to an individual's belief in their ability to control events and outcomes in their life, while industrial work practice represents the practical experience gained through work-related activities in real industrial settings.

The analysis of the combined effect of the three variables yielded compelling results. The F-statistic value obtained was 47.000, surpassing the critical F-table value of 3.06. Additionally, the Sig value (p-value) was calculated to be 0.000, which is well below the significance level of 0.05. These findings indicate a significant relationship and influence between locus of control (X1), industrial work practices (X2), and work readiness (Y).

Furthermore, the coefficient of determination, which measures the proportion of the dependent variable's variance explained by the independent variables, revealed a contribution percentage of 0.410 or 41.0%. This falls within the category of substantial influence as it lies in the range of 0.400-0.599. These results suggest that locus of control and industrial work practice together have a significant impact on work readiness, explaining a substantial portion of the variability in work readiness outcomes.

These findings are consistent with previous research conducted by Diana & Supari (2022), Hidayatulloh et al. (2021), and Wiharja (2019), all of whom reported a positive and significant influence of locus of control and industrial work practices on work readiness. This body of research supports the notion that individuals with a strong belief in their ability to control their lives (locus of control) and those who actively engage in practical work experiences (industrial work practice) are more likely to exhibit higher levels of work readiness.

Overall, these results emphasize the importance of considering both locus of control and industrial work practice in fostering work readiness among individuals. Educational institutions, policymakers, and practitioners can utilize these findings to design and implement interventions that promote the development of internal locus of control beliefs and provide meaningful industrial work practice opportunities. By doing so, they can enhance students' readiness to enter the workforce and increase their chances of success in their future careers.

5. CONCLUSION

Based on the conducted research on the influence of locus of control and industrial work practices on work readiness among Class XII students of SMKN 50 Jakarta, several significant conclusions can be drawn. Firstly, the findings indicate a positive and significant direct effect between locus of control and work readiness. The results of the hypothesis test suggest that students with a strong internal locus of control exhibit higher levels of work readiness.

Secondly, the research reveals a positive and significant direct effect between industrial work practices and work readiness. Actively engaging in industrial work practices is associated with higher levels of work readiness among students. Furthermore,
the study demonstrates that both locus of control and industrial work practices have a positive and significant direct effect on work readiness when considered together. The combined influence of locus of control and industrial work practices significantly predicts work readiness.

These conclusions underscore the importance of developing students' internal locus of control and providing opportunities for meaningful engagement in industrial work practices to enhance their work readiness. Students who possess a strong internal locus of control and actively participate in industrial work practices are more likely to acquire the necessary skills and readiness for the workforce. Based on these findings, it is recommended that educational institutions and policymakers prioritize the cultivation of students' internal locus of control and provide avenues for meaningful involvement in industrial work practices. These efforts can greatly enhance students' work readiness skills and better prepare them for successful transitions into the workforce.

REFERENCES


Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).