PHYSICAL EXERCISE REDUCES INSULIN HORMONE SECRETION AND INCREASES GLUCAGON HORMONE SECRETION: A SYSTEMATIC REVIEW
Main Article Content
The purpose of this study is to investigate and quantify the impact of exercise on insulin and glucagon levels. Employing a systematic approach, this research delves into various journal databases including Embase, PubMed, Web of Science, and Scopus. Criteria for inclusion in this study encompass articles on physical activity, insulin, glucagon, their mechanisms, and publications from the past five years. Only articles from anonymous journals are considered for inclusion. A total of 12,380 articles were identified from Embase, Web of Science, PubMed, and Scopus databases. Approximately ten articles meeting the criteria for this systematic review were thoroughly examined and analyzed. The study adhered to the reporting guidelines outlined in the PRISMA checklist for Systematic and Meta-Analysis. Findings from this systematic review analysis reveal a decrease in insulin secretion and an increase in glucagon production following physical exercise. This is associated with enhanced insulin sensitivity and increased glucose absorption by glucagon post-exercise. Incorporating physical exercise into one's routine is recommended as a proactive measure to enhance insulin sensitivity, elevate glucagon levels, promote glucose synthesis, mitigate energy imbalances, and uphold overall health.
Almuraikhy, S., Doudin, A., Domling, A., Althani, A. A. J. F., & Elrayess, M. A. (2023). Molecular regulators of exercise-mediated insulin sensitivity in non-obese individuals. Journal of Cellular and Molecular Medicine, October 2023, 1–10. https://doi.org/10.1111/jcmm.18015
Alqadi, S. F. (2024). Diabetes Mellitus and Its Influence on Oral Health: Review. Diabetes, Metabolic Syndrome and Obesity, 17(January), 107–120. https://doi.org/10.2147/DMSO.S426671
Ambelu, T., & Teferi, G. (2023). The impact of exercise modalities on blood glucose, blood pressure and body composition in patients with type 2 diabetes mellitus. BMC Sports Science, Medicine and Rehabilitation, 15(1), 1–11. https://doi.org/10.1186/s13102-023-00762-9
Andersen, D. B., & Holst, J. J. (2022). Peptides in the regulation of glucagon secretion. Peptides, 148(October 2021), 170683. https://doi.org/10.1016/j.peptides.2021.170683
Asfaw, M. S., & Dagne, W. K. (2022). Physical activity can improve diabetes patients’ glucose control; A systematic review and meta-analysis. Heliyon, 8(12), e12267. https://doi.org/10.1016/j.heliyon.2022.e12267
Bock, P. M., Monteiro, R. B., Berlanda, G., Casali, K. R., & Schaan, B. D. (2022). Maintenance of plasma glucose variability after an acute session of aerobic exercise despite changes in insulin and glucagon-like peptide-1 levels in type 2 diabetes. Archives of Endocrinology and Metabolism, 66(3), 324–332. https://doi.org/10.20945/2359-3997000000482
Care, D., & Suppl, S. S. (2022). Classification and diagnosis of diabetes : standards of medical care in diabetes — 2022. Diabetes Care, 45(Suppl), 517–538.
Cheng, F., Dun, Y., Cheng, J., Ripley-Gonzalez, J. W., Jiang, W., You, B., & Liu, S. (2022). Exercise activates autophagy and regulates endoplasmic reticulum stress in muscle of high-fat diet mice to alleviate insulin resistance. Biochemical and Biophysical Research Communications, 601, 45–51. https://doi.org/10.1016/j.bbrc.2022.02.058
Dagdeviren, M., Akkan, T., & Ertugrul, D. T. (2024). Re ‑ emergence of a forgotten diabetes complication : Euglycemic diabetic ketoacidosis. 1–7. https://doi.org/10.4103/tjem.tjem
Daniela, M., Catalina, L., Ilie, O., Paula, M., Daniel-Andrei, I., & Ioana, B. (2022). Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants, 11(2). https://doi.org/10.3390/antiox11020350
Deichmann, J., & Kaltenbach, H. M. (2023). Model predictive control to account for prolonged changes in insulin requirements following exercise in type 1 diabetes. Journal of Process Control, 129, 103042. https://doi.org/10.1016/j.jprocont.2023.103042
Enyew, A., Nigussie, K., Mihrete, T., Jemal, M., kedir, S., Alemu, E., & Mohammed, B. (2023). Prevalence and associated factors of physical inactivity among adult diabetes mellitus patients in Felege Hiwot Referral Hospital, Bahir Dar, Northwest Ethiopia. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-022-26895-4
Farrell, C. M., McNeilly, A. D., Fournier, P., Jones, T., Hapca, S. M., West, D., & McCrimmon, R. J. (2020). A randomised controlled study of high intensity exercise as a dishabituating stimulus to improve hypoglycaemia awareness in people with type 1 diabetes: a proof-of-concept study. Diabetologia, 63(4), 853–863. https://doi.org/10.1007/s00125-019-05076-5
Farrell, C. M., McNeilly, A. D., Hapca, S., Fournier, P. A., Jones, T. W., Facchinetti, A., Cappon, G., West, D. J., & McCrimmon, R. J. (2023). High intensity interval training as a novel treatment for impaired awareness of hypoglycaemia in people with type 1 diabetes (HIT4HYPOS): a randomised parallel-group study. Diabetologia, 67(2), 392–402. https://doi.org/10.1007/s00125-023-06051-x
García-Giménez, J. L., Cánovas-Cervera, I., & Pallardó, F. V. (2024a). Oxidative stress and metabolism meet epigenetic modulation in physical exercise. Free Radical Biology & Medicine, 213(November 2023), 123–137. https://doi.org/10.1016/j.freeradbiomed.2024.01.008
García-Giménez, J. L., Cánovas-Cervera, I., & Pallardó, F. V. (2024b). Oxidative stress and metabolism meet epigenetic modulation in physical exercise. Free Radical Biology & Medicine, 213(January), 123–137. https://doi.org/10.1016/j.freeradbiomed.2024.01.008
Han, X., Yang, Y., Liu, S., Niu, Y., Shao, H., & Fu, L. (2023). Aerobic exercise ameliorates insulin resistance in C57BL/6 J mice via activating Sestrin3. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1869(1). https://doi.org/10.1016/j.bbadis.2022.166568
Jensen, S. B. K., Juhl, C. R., Janus, C., Lundgren, J. R., Martinussen, C., Wiingaard, C., Knudsen, C., Frikke-Schmidt, R., Stallknecht, B. M., Holst, J. J., Madsbad, S., & Torekov, S. S. (2023). Weight loss maintenance with exercise and liraglutide improves glucose tolerance, glucagon response, and beta cell function. Obesity, 31(4), 977–989. https://doi.org/10.1002/oby.23715
Ji, L. L., Fretwell, V. S., Escamilla, A., Yao, W., Zhang, T., He, M., & Zhang, J. Q. (2024). An acute exercise at low to moderate intensity attenuated postprandial lipemia and insulin responses. Journal of Exercise Science and Fitness, 22(1), 14–22. https://doi.org/10.1016/j.jesf.2023.10.006
Jung, S.-R., Lee, J.-H., Ryu, H., Gao, Y., & Lee, J. (2024). Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis. The Korean Journal of Physiology & Pharmacology, 28(1), 31–38. https://doi.org/10.4196/kjpp.2024.28.1.31
Jung, S. R., Park, S. Y., Koh, J. H., & Kim, J. Y. (2021). Lithium enhances exercise-induced glycogen breakdown and insulin-induced AKT activation to facilitate glucose uptake in rodent skeletal muscle. Pflugers Archiv European Journal of Physiology, 473(4), 673–682. https://doi.org/10.1007/s00424-021-02543-0
Kanaley, J. A., Colberg, S. R., Corcoran, M. H., Malin, S. K., Rodriguez, N. R., Crespo, C. J., Kirwan, J. P., & Zierath, J. R. (2022). Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. In Medicine and Science in Sports and Exercise (Vol. 54, Issue 2). https://doi.org/10.1249/MSS.0000000000002800
Kristensen, K. B., Ranjan, A. G., McCarthy, O. M., Holst, J. J., Bracken, R. M., Nørgaard, K., & Schmidt, S. (2023). Effects of a Low-Carbohydrate-High-Protein Pre-Exercise Meal in Type 1 Diabetes—a Randomized Crossover Trial. The Journal of Clinical Endocrinology & Metabolism, 109(1), 208–216. https://doi.org/10.1210/clinem/dgad427
Król, M., Urbanowicz, I., & Kepinska, M. (2023). The concentrations of interleukin-6, insulin, and glucagon in the context of obesity and type 2 diabetes, and single nucleotide polymorphisms in IL6 and INS genes. 2024.
Lin, Y., Fan, R., Hao, Z., Li, J., Yang, X., Zhang, Y., & Xia, Y. (2022). The Association Between Physical Activity and Insulin Level Under Different Levels of Lipid Indices and Serum Uric Acid. Frontiers in Physiology, 13(February). https://doi.org/10.3389/fphys.2022.809669
Newsome, A. M., Reed, R., Sansone, J., Batrakoulis, A., McAvoy, C., & W. Parrott, M. (2024). 2024 ACSM Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry. ACSM’S Health & Fitness Journal, 28(1), 14–26. https://doi.org/10.1249/fit.0000000000000933
Onikanni, S. A., Lawal, B., Oyinloye, B. E., Ajiboye, B. O., Ulziijargal, S., Wang, C. H., Emran, T. Bin, & Simal-Gandara, J. (2023). Mitochondrial defects in pancreatic beta-cell dysfunction and neurodegenerative diseases: Pathogenesis and therapeutic applications. Life Sciences, 312(November 2022), 121247. https://doi.org/10.1016/j.lfs.2022.121247
Panzer, J. K., Tamayo, A., & Caicedo, A. (2022). Restoring glutamate receptor signaling in pancreatic alpha cells rescues glucagon responses in type 1 diabetes. Cell Reports, 41(11), 111792. https://doi.org/10.1016/j.celrep.2022.111792
Pastore, I., Bolla, A. M., Montefusco, L., Lunati, M. E., Rossi, A., Assi, E., Zuccotti, G. V., & Fiorina, P. (2020). The impact of diabetes mellitus on cardiovascular risk onset in children and adolescents. International Journal of Molecular Sciences, 21(14), 1–17. https://doi.org/10.3390/ijms21144928
Petersen, M. H., de Almeida, M. E., Wentorf, E. K., Jensen, K., Ørtenblad, N., & Højlund, K. (2022). High-intensity interval training combining rowing and cycling efficiently improves insulin sensitivity, body composition and VO2max in men with obesity and type 2 diabetes. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.1032235
Porter, J. W., Pettit-Mee, R. J., Ready, S. T., Liu, Y., Lastra, G., Chockalingam, A., Winn, N. C., Clart, L., & Kanaley, J. A. (2020). Post Meal Exercise May Lead to Transient Hypoglycemia Irrespective of Glycemic Status in Humans. Frontiers in Endocrinology, 11(September), 1–9. https://doi.org/10.3389/fendo.2020.00578
Rahman, M. S., Hossain, K. S., Das, S., Kundu, S., Adegoke, E. O., Rahman, M. A., Hannan, M. A., Uddin, M. J., & Pang, M. G. (2021). Role of insulin in health and disease: An update. International Journal of Molecular Sciences, 22(12), 1–19. https://doi.org/10.3390/ijms22126403
Shah, S. Z. A., Karam, J. A., Zeb, A., Ullah, R., Shah, A., Haq, I. U., Ali, I., Darain, H., & Chen, H. (2021). Movement is Improvement: The Therapeutic Effects of Exercise and General Physical Activity on Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Therapy, 12(3), 707–732. https://doi.org/10.1007/s13300-021-01005-1
Skroce, K., Zignoli, A., Fontana, F. Y., Maturana, F. M., Lipman, D., Tryfonos, A., Riddell, M. C., & Zisser, H. C. (2024). Real World Interstitial Glucose Profiles of a Large Cohort of Physically Active Men and Women.
Tee, C. C. L., Parr, E. B., Cooke, M. B., Chong, M. C., Rahmat, N., Md Razali, M. R., Yeo, W. K., & Camera, D. M. (2023). Combined effects of exercise and different levels of acute hypoxic severity: A randomized crossover study on glucose regulation in adults with overweight. Frontiers in Physiology, 14(April), 1–9. https://doi.org/10.3389/fphys.2023.1174926
Wendt, A., & Eliasson, L. (2020). Pancreatic α-cells – The unsung heroes in islet function. Seminars in Cell and Developmental Biology, 103(November 2019), 41–50. https://doi.org/10.1016/j.semcdb.2020.01.006
Ye, J., Wu, Y., Yang, S., Zhu, D., Chen, F., Chen, J., Ji, X., & Hou, K. (2023). The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: a systematic analysis of the Global Burden of Disease Study 2019. Frontiers in Endocrinology, 14(July), 1–12. https://doi.org/10.3389/fendo.2023.1192629
Young, J., Lloyd, A., & Haraldsdottir, E. (2023). A qualitative meta-synthesis of studies of patients’ experience of exercise interventions in advanced cancer. Frontiers in Rehabilitation Sciences, 4(January). https://doi.org/10.3389/fresc.2023.1298553
Zatterale, F., Longo, M., Naderi, J., Raciti, G. A., Desiderio, A., Miele, C., & Beguinot, F. (2020). Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Frontiers in Physiology, 10(January), 1–20. https://doi.org/10.3389/fphys.2019.01607
Zhu, R., Zhou, S., Xia, L., & Bao, X. (2022). Incidence, Morbidity and years Lived With Disability due to Type 2 Diabetes Mellitus in 204 Countries and Territories: Trends From 1990 to 2019. Frontiers in Endocrinology, 13(July), 1–10. https://doi.org/10.3389/fendo.2022.905538