INTERNATIONAL JOURNAL ON ADVANCED TECHNOLOGY, ENGINEERING, AND INFORMATION SYSTEM (IJATEIS)

ANALYSIS OF PIPE NETWORK OPTIMIZATION FOR RAW WATER IN JABUNG SUB-DISTRICT, MALANG DISTRICT

Putut Subandriyo^{1*}, Laksono Djoko Nugroho², Haris Muhammadun³

¹⁻³Civil Engineering Study Program, Faculty of Engineering, Universitas 17 Agustus Surabaya E-mail: ¹⁾ gentfu@gmail.com

Abstract

Jabung District is a sub-district located in the Malang Regency area of 135.89 km2 or around 4.56 percent of the total area of Malang Regency. This sub-district consists of 15 villages, including Argosari, Gadingkembar, Gunungjati, Jabung, Kemantren, Kemiri, Kenongo, Ngadirejo, Pandansari Lor, Sidomulyo, Sidorejo, Slamparejo, Sukolilo, Sukopuro, and Taji. With a population of 74,311 people in 2020, with a population density of 592 people/km2. In Jabung District, especially in 4 villages, including Pandansari Lor Village, Gading Kembar Village, Argosari Village, and Kemiri Village, there is currently a water shortage. Siuk Source Potential has water potential large enough to meet the standard needs in these 4 villages by gravity. From the results of instantaneous discharge measurements during the dry season in 2021, it can be seen that the discharge in Sumber Siuk is 65 l/sec, and the planned collection to fulfill these 4 villages is 20 l/sec. Construction of the broncaptering and raw water distribution network was built in 3 stages. Before the physical implementation of the installation of distribution pipes in stage 3, a trial run was carried out from stage 1 and stage 2.

Keywords: Raw Water, Pipe Network, Optimization

1. INTRODUCTION

Water is an extraordinary substance that is blessed by Allah SWT. Water can flow, change, pass through various obstacles to the flow through it. The existence of water in nature is very dependent on the surrounding natural environment and its channels, which continuously flow following the hydrological cycle or water cycle, namely moving from the ocean to the earth and back to the ocean, and so on.

Raw water sources used for drinking water needs can consist of springs, surface water (rivers, lakes, reservoirs, etc.), groundwater (dug wells, boreholes) and rainwater. In terms of water quality, the quality of spring water compared to surface water is generally relatively clear, so it is better to use spring water compared to surface water. However, the existence of springs is currently decreasing. Due to subsidence problems, groundwater, which usually has a higher iron and manganese content relative to other water sources, must be reduced or stopped. Rainwater, whose availability depends on the season, can still be used as a source of raw water by building large tanks or ponds.

Kecamatan Jabung is a kecamatan in Malang Regency with an area of 135.89 km2 or about 4.56 percent of the area of Malang Regency. The sub-district consists of 15 villages, including Argosari, Gadingkembar, Gunungjati, Jabung, Kemantren, Kemiri, Kenongo, Ngadirejo, Pandansari Lor, Sidomulyo, Sidorejo, Slamparejo, Sukolilo, Sukopuro and Taji. The population at the end of 2022 was 76,970 people and the population density was 566.41 people per square kilometer.

In Jabung Subdistrict, especially in 4 villages including Pandansari Lor Village, Gading Kembar Village, Argosari Village, and Kemiri Village, there is currently a shortage of water in meeting daily raw water needs. Based on the recording of BPS Malang Regency in 2023 in figures for each village, among others: Pandansari Lor Village 4,594 people, Gading Kembar Village 4,625 people, Argosari Village 4,234 people and Kemiri Village 6,139 people. Currently, these 4 villages rely on springs and surface water in the vicinity with decreasing discharge. The distribution network developed by the community is currently still makeshift and self-supporting by the village community. So that in 2019 the construction of a water catcher (broncaptering) and raw water distribution network was carried out which took from Sumber Siuk in Taji Village, Jabung District.

Siuk Source has a large enough water potential to meet raw water needs in the four villages by gravity (energy efficiency). From the results of instantaneous discharge measurements in the dry season in 2021, it can be seen that the existing discharge at Siuk Source is $51.30 \, 1/d$, and the withdrawal plan for the fulfillment of the 4 villages is $15 \, 1/d$.

The construction of water catchers (broncaptering) and raw water distribution pipelines built through 3 stages of development. In stage 1, 9,131.90 m of broncaptering, reservoirs, and distribution networks were built, stage 2 continued the installation of 10,254.90 meters of raw water distribution pipes, and stage 3 also continued the installation of 5,822.20 m of distribution pipes and the construction of reservoirs in Kemiri Village. Prior to the installation of stage 3 distribution pipes, stage 1 and stage 2 flow tests were carried out. The pipe material for stage 1 and stage 2 lines is PVC pipe \emptyset 6 "Type RRJ-S10 and some Galvanized Iron pipes on bridges / river crossings, while for stage 3 a distribution pipeline is planned that goes to Kemiri Village services with the same pipe specifications, namely PVC pipe Ø 6 "Type RRJ-S10 and HDPE PN 16 pipes totaling 5,822 m with a demand discharge of 7 l / d. The results of stage 1 and stage 2 flow tests are shown in Figure 1. The results of Phase 1 and Phase 2 flow testing on the distribution pipe show that there are several points where the pipe is broken and leaking. High pressure is a problem caused by intermittent water flow, bursts and leaks, and the communities in these four villages have high hopes for Sumber Siuk water to meet their raw water needs (PIPEFLOW.CO.UK. 2017).

To obtain results that are in accordance with expectations from both technical and non-technical aspects by making the right choice in the selection of components and materials, it is important to conduct research on the "ANALYSIS OF OPTIMIZATION OF PIPE NETWORKS FOR BAKU WATER" as well as rechecking the system from the source of Siuk to the last distribution pipe network, this is considering that there are still broken pipes at several points so that water cannot optimally serve residents in 4 villages(Sulistyarso 2015).

2. RESEARCH METHODS

The location of this research is located in Jabung District, which is a sub-district located in Malang Regency. Data collection instruments are tools selected and used by researchers in their activities to collect data so that these activities become systematic and

made easier by them (Sugiyono 2018). Furthermore, instruments defined as tools are means that can be realized in tools and materials.

In this study, the data collection methods used were observation, observation, and documentation. The type of data used in this study is primary data in the form of observation. Observations were made on:

- a. The location of the raw water service area plan, namely pandansari lor village, gading kembar village, kemiri gede village and argosari village (Amin, Maricar, and Hatta 2021).
- b. Location of coban siuk raw water source intake plan Location of existing distribution pipe network.

Secondary data is obtained from sources that can support research, including documentation and literature. The secondary data required in this study are as follows:

- a. Geospatial Information Agency earth map Scale 1: 25.000.
- b. Topogarfi measurement data from Coban Siuk to the service area.
- c. Coban Siuk water source water discharge measurement data.
- d. Satellite Image Recording.
- e. BPS data 2023 in figures Jabung District Malang Regency.
- f. According to Minister of Health Regulation No. 492/2010 on raw water quality guidelines.
- g. Minister of Public Works and Public Housing Regulation No. 27/PRT/M/2016 of 2016 concerning guidelines for the implementation of raw water supply.
- h. Indonesian National Standard (SNI) on pipe material and material specifications (Indonesia 2008)(Nasional 2002).

The data analysis carried out in this study is as follows:

a. Water Source Analysis

Conduct analysis and identification based on the data obtained on water sources that have sufficient water potential to meet raw needs in the service area by gravity and in accordance with the Regulation of the Minister of Health of the Republic of Indonesia Number 492 / MENKES / PER / IV / 2010 concerning Drinking Water Quality Requirements (Permenkes 2010).

b. Analysis of Existing Distribution Pipe Network

Identify and analyze based on the data obtained on the existing distribution pipe network from the water source to the service area(Natara 2018).

c. Population Growth Projection Analysis

Analyze the projected development of the population for the next few years based on the records of BPS Malang Regency Jabung District in numbers.

d. Evaluation of Pipe Hydraulics

In evaluating pipe hydraulics, the Clean Water Distribution Network System Components are modeled in the WaterCAD program, the components of the clean water distribution network system such as reservoir points, pipes, junctions, reservoirs are

modeled in such a way as to approach the performance of these components in the field(PUPR 2017).

e. Distribution Pipe Network Analysis

Analysis of the Clean Water Distribution Network System. after the network is drawn and all components are arranged as desired, then to analyze the network system, running (calculate) is carried out (Novianti, Salim, and Setyaningtias 2022).

3. RESULTS AND DISCUSSION

3.1. Projected Total Population Growth

As time goes by, the total population will also grow as well as what happens in the Jabung sub-district of Malang Regency, especially in several villages in the study to be carried out including Pandansari Lor Village, Gading Twin Village, Argosari Village and Kemiri Gede Village.

This method is often referred to as the population growth rates method. Projections based on population growth rates assume constant growth, either for arithmetic, geometric, or exponential models to estimate population numbers.

Desa		Jumlah	n Pendudu	k (jiwa)	
Desa	2018	2019	2020	2021	2022
Kenongo	2.761	2.859	2.606	2.666	2.728
Ngadirejo	2.215	2.291	2.067	2.035	2.094
Taji	1.309	1.333	1.206	1.264	1.285
Pandansari Lor	4.588	4.913	4.411	4.530	4.594
Sukopuro	6.527	6.712	6.129	6.154	6.262
Sidorejo	4.193	4.314	4.019	4.081	4.153
Sukolilo	6.054	6.219	5.902	5.989	6.165
Sidomulyo	4.829	4.956	4.563	4.590	4.769
Gadingkembar	4.682	4.800	4.540	4.553	4.625
Kemantren	12.070	12.193	11.452	11.473	11.676
Argosari	4.267	4.373	3.985	4.137	4.234
Slamparejo	5.640	5.744	5.492	5.464	5.578
Kemiri	6.080	6.301	5.762	5.901	6.139
Jabung	9.445	9.541	8.583	8.692	8.932
Gunungjati	3.801	3.961	3.594	3.656	3.736
Total	78.461	80.510	74.311	75.185	76.970

Table 1. Total Population

Sumber : Kecamatan Jabung Dalam Angka 2019 - 2023

Desa		Jumlah Penduduk (jiwa)								
Desa	2018	2019	2020	2021	2022					
Pandansari Lor	4.588	4.913	4.411	4.530	4.594					
Gadingkembar	4.682	4.800	4.540	4.553	4.625					
Argosari	4.267	4.373	3.985	4.137	4.234					
Kemiri	6.080	6.301	5.762	5.901	6.139					
Jumlah	19.617	20.387	18.698	19.121	19.592					

Source: Jabung Sub-district in 2019-2023

 $r = (4.594/4.588) \times (1 / 5) - 1$ r = 0.000 Pn = 4.594 x (1 + 0.000)^2 Pn = 4.595

The projected population growth until 2041 can be seen in the following table:

Sumber: Hasil Perhitungan

Tahun	Aritmatika	Geometri	k	Eksponens	ial	Least Square
	(Jiwa)	(Jiwa)		(Jiwa)		(Jiwa)
2019	4.594	4.594		4.594		4594
2020	4.595	4.595		4595		33406
2021	4.596	4.596		4596		33968
2022	4.598	4.598		4598		34530
2023	4.599	4.599		4599		35092
2024	4.600	4.600		4600		35654
2025	4.601	4.601		4601		36217
2026	4.602	4.602		4602		36779
2027	4.604	4.604		4604		37341
2028	4.605	4.605		4605		37903
2029	4.606	4.606		4606		38465
2030	4.607	4.607		4607		39027
2031	4.608	4.608		4608		39589
2032	4.610	4.610		4610		40151
2033	4.611	4.611		4611		40713
2034	4.612	4.612		4612		41275
2035	4.613	4.613		4613		41838
2036	4.614	4.614		4614		42400
2037	4.616	4.616		4616		42962
2038	4.617	4.617		4617		43524
2039	4.618	4.618		4618		44086
2040	4.619	4.619		4619		44648
2041	4.620	4.620		4620		45210
2042	4.622		4.622		4622	4577.
2043	4.623	4	4.623		4623	4633
Stdev	8,84		8,87		8,86	8057,0
Korelasi	1,00		1,00		1,00	0,9
Uji Kesesuaian Me			umlah	n Pendudul	c	
	5	Sungai Sisir				
Nomor	Metod	e –			pitulas	
					Koef	isien Korelasi
1	Aritmat			,843		1,000
2	Geomet	rik	8	,865		1,000
3	Eksponer	nsial		,864		1,000
4	Least Squ	lare	805	8057,037		0,980

Table 2. Projected Population of Pandansari Lor Village

Source: Calculation results

Table 3. Projected Raw Water Needs of Pandansari Lor Village

No	Uraian		Tahun			
		Satuan	2021	2022	2041	
1	Jumlah Penduduk	Jiwa	4.596	4.598	4620	
2	Kebutuhan Air					
	- Sambungan Rumah (SR)	lt/org/hr	100	100	100	
3	Pelayanan					
	- Sambungan Rumah (SR)	jiwa/Samb	5	5	5	
4	Faktor Pemakaian					
	- Kebutuhan Harian Maksimum		1.1	1,1	1.1	
	- Kebutuhan Jam Puncak		1,50	1,75	1,50	
5	Prosentase Pelayanan Penduduk					
	- Sambungan Rumah (SR)	%	100	100	100	
6	Jumlah Penduduk Terlayani					
	- Sambungan Rumah (SR)	Jiwa	4.597	4.598	4.621	
7	Jumlah Sambungan					
	- Sambungan Rumah (SR)	Unit	920	920	925	
8	Kebutuhan Domestik					
	- Sambungan Rumah (SR)	lt/hr	459.640,22	459.760,38	462.049,34	
		lt/dt	5,32	5,32	5,35	
9	Kebutuhan Non Domestik	%	20%	20%	20%	
		lt/hr	91.928,04	91.952,08	92.409,87	
		lt/dt	1,06	1,06	1,07	
10	Faktor Kehilangan	%	20%	20%	20%	
11	Total kehilangan	lt/hr	110.313,65	110.342,49	110.891,84	
		lt/dt	1,28	1,28	1,28	
12	Total Kebutuhan Harian Rerata	lt/hr	661.881,92	662.054,94	665.351,04	
		lt/dt	7,66	7,66	7,70	
13	Total Kebutuhan Harian Maksimal	lt/hr	728.070,11	728.260,44	731.886,15	
		lt/dt	8,43	8,43	8,47	
14	Total Kebutuhan Pada Jam Puncak	lt/dt	11,49	13,41	11,55	
Se	suai Kebutuhan Proyeksi :					
Ka	pasitas Tandon (15% dari Kebutuhan Air)		: 1097	782,92	lite	
			: 1	09,78	m³	
Dir	nensi Tandon Pandansari Lor (P × L × T)		: 8 x 7.75	x 2.75	m³	
				70.50	m ³	

Source: Analysis results

		Proye	ksi Jum	ılah Penduduk	
Tahun	Aritmatika	Geomet	rik	Eksponensi	ial Least Squar
	(Jiwa)	(Jiwa)	(Jiwa)	(Jiwa)
2019	3.985	3.985		3.985	3985
2020	3.932	3.931		3931	33406
2021	3.880	3.877		3878	33968
2022	3.827	3.825		3825	34530
2023	3.774	3.773		3773	35092
2024	3.722	3.722		3722	35654
2025	3.669	3.671		3671	36217
2026	3.616	3.621		3621	36779
2027	3.564	3.572		3572	37341
2028	3.511	3.524		3524	37903
2029	3.458	3.476		3476	38465
2030	3.406	3.428		3429	39027
2031	3.353	3.382	3.382		39589
2032	3.300	3.336		3336	40151
2033	3.248	3.291		3291	40713
2034	3.195	3.246		3246	41275
2035	3.142	3.202			41838
2036	3.090	3.158		3158	42400
2037	3.037	3.116		3116	42962
2038	2.984	3.073	3073		43524
2039	2.932	3.031		3032	44086
2040	2.879	2.990	1	2990	44648
2041	2.826	2.950		2950	45210
Stdev	387,66	341,6		341,66	8163,90
Korelasi	-1,00	-1,00)	-1,00	0,98
Uji Kesesuaian Me				ah Pendudul	k
		Sungai Sisi	r	Reka	pitulasi
Nomor	Meto	de	Ston		Koefisien Korel
1	A	/ 1			
1	Aritma			87,660	-1,000
2	Geome			41,688	-1,000
3	Ekspone			41,659	-1,000
4	Least Sq				0.980

Table 4. Projected Population of Argosari Village

Source: Calculation result

Table 5. Projected Raw Water Needs of Argosari Village

No	Uraian	C	Tahun			
140		Satuan	2022	2023	2041	
1	Jumlah Penduduk	Jiwa	3.825	3773	2950	
2	Kebutuhan Air					
	- Sambungan Rumah (SR)	lt/org/hr	100	100	100	
3	Pelayanan					
	- Sambungan Rumah (SR)	jiwa/Samb	5	5	5	
4	Faktor Pemakaian					
	- Kebutuhan Harian Maksimum		1,1	1,1	1,1	
	- Kebutuhan Jam Puncak		1,75	1,75	1,50	
5	Prosentase Pelayanan Penduduk					
	- Sambungan Rumah (SR)	%	100	100	100	
6	Jumlah Penduduk Terlayani					
	- Sambungan Rumah (SR)	Jiwa	3.825	3.773	2.950	
7	Jumlah Sambungan					
	- Sambungan Rumah (SR)	Unit	765	755	590	
8	Kebutuhan Domestik					
	- Sambungan Rumah (SR)	lt/hr	382.482,65	377.287,90	294.966,93	
		lt/dt	4,43	4,37	3,41	
9	Kebutuhan Non Domestik	%	20%	20%	20%	
		lt/hr	76.496,53	75.457,58	58.993,39	
		lt/dt	0,89	0,87	0,68	
10	Faktor Kehilangan	%	20%	20%	20%	
11	Total kehilangan	lt/hr	91.795,84	90.549,09	70.792,06	
		lt/dt	1,06	1,05	0,82	
12	Total Kebutuhan Harian Rerata	lt/hr	550.775,01	543.294,57	424.752,3	
		lt/dt	6,37	6,29	4,92	
13	Total Kebutuhan Harian Maksimal	lt/hr	605.852,51	597.624,03	467.227,62	
		lt/dt	7,01	6,92	5,41	
	Total Kebutuhan Pada Jam Puncak	lt/dt	11,16	11,00	7,37	
	suai Kebutuhan Proyeksi :					
Kaj	pasitas Tandon (15% dari Kebutuhan Air)		: 70	084,14	lite	
			:	70,08	m	
Din	nensi Tandon Argosari (P x L x T)		: 7.2 x 7.0	x 2.5	m	
				26.00	m	

Source: Analysis result (2022)

		Proyek	si Jumlah Penduduk	
Tahun	Aritmatika	Geometr	ik Eksponensia	1 Least Square
	(Jiwa)	(Jiwa)	(Jiwa)	(Jiwa)
2019	4.540	4.540	4.540	4540
2020	4.512	4.512	4512	33406
2021	4.485	4.484	4484	33968
2022	4.457	4.457	4457	34530
2023	4.430	4.430	4430	35092
2024	4.402	4.402	4402	35654
2025	4.375	4.375	4375	36217
2026	4.347	4.348	4348	36779
2027	4.320	4.322	4322	37341
2028	4.292	4.295	4295	37903
2029	4.265	4.269	4269	38465
2030	4.237	4.243	4243	39027
2031	4.210	4.217	4217	39589
2032	4.182	4.191	4191	40151
2033	4.154	4.165	4165	40713
2034	4.127	4.139	4139	41275
2035	4.099	4.114	4114	41838
2036	4.072	4.089	4089	42400
2037	4.044	4.064	4064	42962
2038	4.017	4.039	4039	43524
2039	3.989	4.014	4014	44086
2040	3.962	3,989	3989	44648
2041	3.934	3,965	3965	45210
Stdev	202,68	191,30	191,28	8066,50
Korelasi	-1,00	-1,00	-1,00	0,98
Uji Kesesuaian M	letode Proyeksi I	ertumbuha Sungai Sisi		ık
		Sungai Sisi		
Nomor	Mete	ođe		pitulasi
			Standar Deviasi	Koefisien Korela
1	Aritm	atik	202,679	-1,000
2	Geom	etrik	191,302	-1,000
3	Ekspor	ensial	191.284	-1,000
5				

Table 6. Projected Population of Gading Kembar Village

Source: Calculation result

Table 7. Projected Raw Water Demand of Gading Kembar Village

	Uraian	Satuan	Tahun				
No			2022	2023	2041		
1	Jumlah Penduduk	Jiwa	4.457	4430	3965		
2	Kebutuhan Air						
	- Sambungan Rumah (SR)	lt/org/hr	100	100	100		
3	Pelayanan						
	- Sambungan Rumah (SR)	jiwa/Samb	5	5	5		
4	Faktor Pemakaian						
	- Kebutuhan Harian Maksimum		1,1	1,1	1,1		
	- Kebutuhan Jam Puncak		1,75	1,75	1,50		
5	Prosentase Pelayanan Penduduk						
	- Sambungan Rumah (SR)	%	100	100	100		
6	Jumlah Penduduk Terlayani						
	- Sambungan Rumah (SR)	Jiwa	4.457	4.430	3.965		
7	Jumlah Sambungan						
	- Sambungan Rumah (SR)	Unit	892	886	793		
8	Kebutuhan Domestik						
	- Sambungan Rumah (SR)	lt/hr	445.687,57	442.950,72	396.463,68		
		lt/dt	5,16	5,13	4,59		
9	Kebutuhan Non Domestik	%	20%	20%	20%		
		lt/hr	89.137,51	88.590,14	79.292,74		
		lt/dt	1,03	1,03	0,92		
10	Faktor Kehilangan	%	20%	20%	20%		
11	Total kehilangan	lt/hr	106.965,02	106.308,17	95.151,28		
		lt/dt	1,24	1,23	1,10		
12	Total Kebutuhan Harian Rerata	lt/hr	641.790,10	637.849,03	570.907,6		
		lt/dt	7,43	7,38	6,61		
13	Total Kebutuhan Harian Maksimal	lt/hr	705.969,11	701.633,93	627.998,46		
		lt/dt	8,17	8,12	7,27		
	Total Kebutuhan Pada Jam Puncak	lt/dt	13,00	12,92	9,91		
	suai Kebutuhan Proyeksi :						
Ka	pasitas Tandon (15% dari Kebutuhan Air)		: 941	99,77	liter		
			:	94,20	m ³		
Dir	nensi Tandon Gading Kembar (P x L x T)		: 8 x 7	x 3.0	m ³		
	ç		. 14	68.00	m ³		
	Source: Ana				m		

Source: Analysis result (2023)

		Proy	eksi Juml	ah Penduduk		
Tahun	Aritmatika	Geome	etrik	Eksponen	sial	Least Square
	(Jiwa)	(Jiw	ra)	(Jiwa))	(Jiwa)
2019	5.762	5.76	52	5.762		5762
2020	5.702	5.70	00	5700		33406
2021	5.641	5.64	10	5640		33968
2022	5.581	5.51	79	5579		34530
2023	5.521	5.52	20	5520		35092
2024	5.461	5.40	51	5461		35654
2025	5.400	5.40)2	5402		36217
2026	5.340	5.34	15	5345		36779
2027	5.280	5.28	37	5287		37341
2028	5.220	5.23	31	5231		37903
2029	5.159	5.17	75	5175		38465
2030	5.099	5.12	20	5120		39027
2031	5.039	5.06	5.065			39589
2032	4.978	5.011		5011		40151
2033	4.918	4.957		4957		40713
2034	4.858	4.90)4	4904		41275
2035	4.798	4.85	52	4852		41838
2036	4.737	4.80	00	4800		42400
2037	4.677	4.74	19	4749		42962
2038	4.617	4.69	98	8 4698		43524
2039	4.557	4.64	18	4648		44086
2040	4.496	4.59				44648
2041	4.436	4.54	19	4549		45210
Stdev	443,60	401,		401,43		7853,29
Korelasi	-1,00	-1,0	00	-1,00		0,98
Uji Kesesuaian Me	tode Proyeksi Pe	rtumbuha	n Jumlał	n Pendudul	c	
		Sungai Sis	sir 🛛			
Nomor	Metod	e			pitula	
	Metod		Standa	ar Deviasi	Koef	isien Korelasi
1	Aritma	tik	44	3,601		-1,000
2	Geomet	rik	40	1,469		-1,000
3	Eksponer	nsial	40	1,433		-1,000
4	Least Sqi	iare	785	3,293		0,980
Sumber: Hasil Per	1.					

Table 8. Projected Population of Kemiri Gede Village

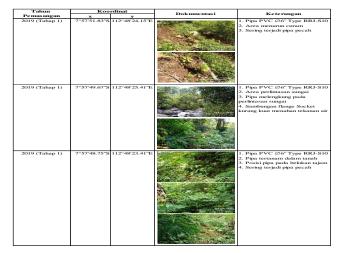
Source: Calculation results

Table 9. Projected Raw Water Demand of Kemiri Gede Village

No	Uraian	Satuan	Tahun			
			2022	2023	2041	
1	Jumlah Penduduk	Jiwa	5.579	5520	4549	
2	Kebutuhan Air					
	- Sambungan Rumah (SR)	lt/org/hr	100	100	100	
3	Pelayanan					
	- Sambungan Rumah (SR)	jiwa/Samb	5	5	5	
4	Faktor Pemakaian					
	- Kebutuhan Harian Maksimum		1,1	1,1	1,1	
	- Kebutuhan Jam Puncak		1,75	1,75	1,50	
5	Prosentase Pelayanan Penduduk					
	- Sambungan Rumah (SR)	%	100	100	100	
6	Jumlah Penduduk Terlayani					
	- Sambungan Rumah (SR)	Jiwa	5.580	5.520	4.550	
7	Jumlah Sambungan					
	- Sambungan Rumah (SR)	Unit	1.116	1.104	910	
8	Kebutuhan Domestik					
	- Sambungan Rumah (SR)	lt/hr	557.924,02	551.961,76	454.904,07	
		lt/dt	6,46	6,39	5,27	
9	Kebutuhan Non Domestik	%	20%	20%	20%	
		lt/hr	111.584,80	110.392,35	90.980,81	
		lt/dt	1,29	1,28	1,05	
10	Faktor Kehilangan	%	20%	20%	20%	
11	Total kehilangan	lt/hr	133.901,76	132.470,82	109.176,98	
		lt/dt	1,55	1,53	1,26	
12	Total Kebutuhan Harian Rerata	lt/hr	803.410,59	794.824,94	655.061,86	
		lt/dt	9,30	9,20	7,58	
13	Total Kebutuhan Harian Maksimal	lt/hr	883.751,65	874.307,43	720.568,05	
		lt/dt	10,23	10,12	8,34	
14	Total Kebutuhan Pada Jam Puncak	lt/dt	16,27	16,10	11,37	

Source: Analysis result (2023)

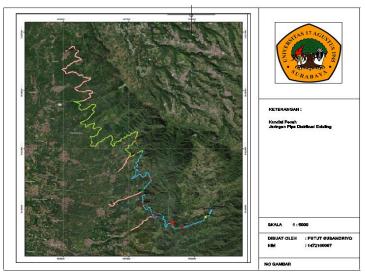
3.2. Identification of Distribution Pipe Network

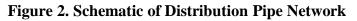

The distribution pipeline network from Coban Siuk to the service area is currently installed using a combination of materials(Risdiyanto and Harliansyah 2022). Currently, the main network that has been installed from the Reservoir to the Kemiri Tandon has not been able to flow water optimally, this is because there are many leaks and broken pipes when water is flowed as needed. The distribution pipe network is divided into 3 stages as in the following table:

No	Distribution Pipe	Pipe Diam eter	Pipe Type	Length (m)	Informa tion
	Jalur Distribusi Utama				
	a. Reservoir – Taji reservoir	6"	Galvanis (GI)	75,31	Stage 1 2019
	b. Taji reservoir - BPT 1 Pipa Kanan	4"	Galvanis (GI)	488,95	Stage 1 2019
	c. Taji Reservoir - BPT 1 Left Pipe	4"	Galvanis (GI)	210,08	Stage 1 2019
	d. BPT 1 - BPT 2	6"	Galvanis (GI)	1074,8 7	Stage 1 2019
	e. BPT.2 <u>- End</u> of Stage 1 (P 255)	6"	PVC 🗆 6" Type RRJ-S10	7282,6 4	Stage 1 2019
	f. End of Stage 1 (P-255) - End of Stage 2 (P-597)	6"	PVC 🗆 6" Type RRJ-S10	10255, 5	Stage 1 2020
	g. End of Stage 2 (P-597) <u>–</u> <u>Kemiri</u> reservoir	6"	Combination of PVC [] 6" Type RRJ-S10,S8, and HDPE PN16	5842,4	Stage 2 2021
	Tapping				
	a. P.102 <u>- To</u> Pandansari Lor Village Services	4"	HDPE PN 12.5 SDR 13.6	1130,5 5	Plan
	b. P.142 <u>- To</u> Gading Kembar Village Services	3"	HDPE PN 12.5 SDR 13.6	1594,7 4	Plan
	c. P.268 <u>- To</u> Argosari Village Services	2"	HDPE PN 12.5 SDR 13.6	814,07	Plan

Table 10. Distribution Pipes

Source: Processed data (2023)


Table 11. Condition of Distribution Pipe Problems



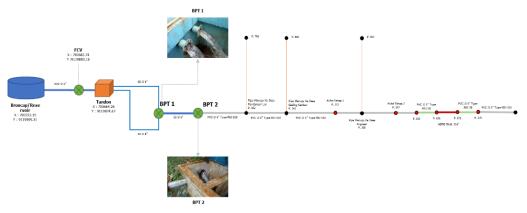

Source: Processed data (2023)

Figure 1. Location of Existing Distribution Pipe Leaks and Ruptures

Source: Processed data (2023)

Source: Processed data (2023)

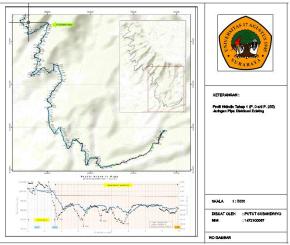
3.3. Evaluation of Distribution Pipe Network

This chapter will analyze and evaluate the existing conditions of the current distribution pipe network(Rembulan et al. 2020). To get good analysis and evaluation results in conducting the analysis, WaterCAD v.8i software is used(Nuryani and Santosa 2020). While the data used are technical data on distribution pipe networks and primary data from measurements taken in 2022(Rada and Triatmadja 2021).

3.4. Existing Distribution Pipe Network

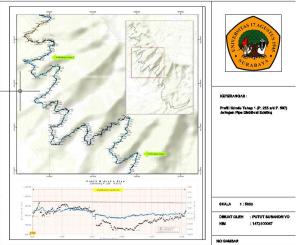
The current distribution pipeline network from the Reservoir to the Tandon in Kemiri Village is 25,209.70 m long with a planned discharge of 9 l/dt, while the tapping line with a planned discharge of 2 l/dt to the service areas of Pandansari Lor Village, Gading Kembar Village, and Argosari Village has not been installed. The service to the Kemiri reservoir is not optimal because the upstream part of the network often has leaking and pipe bursting problems. Table 4.9 is the result of analyzing the existing hydraulic conditions of the distribution network from the Reservoir to Kemiri Tandon. Pipe specifications installed in the distribution pipeline network include:

- 1) S-8 class pipe, which is a 6 "PVC pipe that can withstand water pressure from inside up to 16 bar.
- 2) S-10 class pipe, which is a PVC pipe that can withstand water pressure from the inside up to 12.5 bar.
- 3) Galvanized Iron Schedule 40 pipe is a pipe that has a standardized thickness set by ANSI (American Nation Standart Institute). SCH is a parameter for measuring wall thickness with ID. While the code 40 refers to the strength of the pipe resistance that can reach 40 bar.
- 4) HDPE PN 16 pipe which is able to withstand water pressure from inside up to 16 bar.

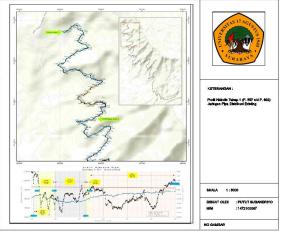

3.5. Pipeline Hydraulics

Based on the existing conditions installed, it can be seen the ability to withstand pressure, flow velocity in the pipe, and hydraulic grade in each section of the pipe the complete analysis results are presented on the attachment page, the following is a recapitulation of the analysis results with the help of Watercad v8.i software:

- In Section Reservoir Press Release Tub 2 (Tandon Taji) using galvanized iron pipe matrial, the maximum pressure that occurs is 5.22 bar and the minimum pressure is 0.00 bar, the maximum flow velocity in the pipe that occurs is 0.82 m/s and the minimum pressure is 0.49 m/s, while the maximum hydraulic grade that occurs is 4.50 m/s and the minimum pressure is 1.54 m/s(Haestad Methods 1999).
- 2) In Section 2 P. 255/J.255 (end of stage 1) using PVC pipe material Type RRJ-S10, the maximum pressure that occurs is 18.97 bar and the minimum pressure is 2.01 bar, the maximum flow velocity in the pipe that occurs is 0.49 m/s and the minimum pressure is 0.49 m/s, while the maximum hydraulic grade that occurs is 1.55 m/s and the minimum pressure is 1.54 m/s.
- 3) In Section P. 255/J.255 (end of stage 1) P. 597/J.597 (end of stage 2) using PVC pipe material Type RRJ-S10, the maximum pressure that occurs is 16.43 bar and the minimum pressure is 6.07 bar, the maximum flow velocity in the pipe that occurs is


0.49 m/s and the minimum pressure is 0.49 m/s, while the maximum hydraulic grade that occurs is 1.56 m/s and the minimum pressure is 1.53 m/s.

- 4) In Section P. 597/J.597 (end of stage 2) P. 601/J.601 (stage 3) using PVC pipe material Type RRJ-S10, the maximum pressure that occurs is 9.42 bar and the minimum pressure is 8.13 bar, the maximum flow velocity in the pipe that occurs is 0.49 m/s and the minimum pressure is 0.49 m/s, while the maximum hydraulic grade that occurs is 1.55 m/s and the minimum pressure is 1.54 m/s.
- 5) In Section P. 601/J.601 (stage 3) P. 626/J.626 (stage 3) using PVC pipe material Type RRJ-S8, the maximum pressure was 13.11 bar and the minimum pressure was 11.17 bar, the maximum flow velocity in the pipe was 0.49 m/s and the minimum pressure was 0.49 m/s, while the maximum hydraulic grade was 2.01 m/s and the minimum pressure was 1.54 m/s.
- 6) In Section P. 626/J.626 (stage 3) P. 671/J.671 (stage 3) using HDPE PN16 pipe material, the maximum pressure is 16.41 bar and the minimum pressure is 13.23 bar, the maximum flow velocity in the pipe is 0.49 m/s and the minimum pressure is 0.49 m/s, while the maximum hydraulic grade is 2.02 m/s and the minimum pressure is 1.55 m/s.
- 7) In Section P. 671/J.671 (stage 3) P. 676/J.676 (stage 3) using PVC pipe material Type RRJ-S8, the maximum pressure that occurs is 13.56 bar and the minimum pressure is 11.22 bar, the maximum flow velocity in the pipe that occurs is 0.49 m/s and the minimum pressure is 0.49 m/s, while the maximum hydraulic grade that occurs is 1.55 m/s and the minimum pressure is 1.54 m/s.
- 8) In Section P. 676/J.676 (stage 3) Kemiri Tandon (stage 3) using PVC pipe matrial Type RRJ-S10, the maximum pressure that occurs is 10.39 bar and the minimum pressure is 3.31 bar, the maximum flow velocity in the pipe that occurs is 0.57 m/s and the minimum pressure is 0.49 m/s, while the maximum hydraulic grade that occurs is 4.83 m/s and the minimum pressure is 1.54 m/s.


Source: Processed data (2023) Figure 3. Existing Hydraulic Distribution Pipe Network Phase I (P. 0 to P.255)

Source: Processed data (2023)

Figure 4. Existing hydraulic distribution pipe network Phase I (P. 255 to P.597)

Source: Processed data (2023)

Figure 5. Existing hydraulic distribution pipe network Phase I (P. 255 to P.597)

3.6. Material Specifications

Based on the results of the analysis, transmission pipe criteria, and pipe material specifications that:

- 1. Review of the flow velocity in the pipe, the flow velocity is in accordance with the minimum velocity criteria of 0.3 m/s for all types of pipe material, and the maximum velocity of 4.5 m/s for PVC pipe material and 6 m/s for DCIP pipe material. From the results of the analysis on all sections of the pipe network, it still meets the criteria for both PVC pipe material and DCIP pipe material(Pahude 2022).
- 2. The pressure review can be seen that the pressure that occurs is different, on steep and steep topography there is great pressure. The ability to withstand the existing

pressure depends on the type of material installed. The following are the results of the analysis based on the hydraulic pressure review that occurred:

- a) In Section Reservoir Press Release Tub 2 using galvanized iron pipe material, the maximum pressure that occurs is 5.22 bar and the minimum pressure is 0.00 bar, based on the specifications of galvanized iron pipe material with sch 40, the pressure that occurs is still far below the ability of the pipe to withstand pressures up to 40 bar.
- b) At Section 2 P. 255 (end of stage 1) the pressure that occurs in this section is very large if compared with the specifications of the pipe material installed. With RRJ-S10 PVC pipes that can only withstand a maximum pressure of 12.5 bar, while the pressure that occurs at some points exceeds the ability of the pipe which causes the pipe to burst. This is also supported by the absence of air valves and trashblocks at vulnerable points. In this section there are many vulnerable points with hydraulic that occurs more than 12 bar. The following is the location of the vulnerable points in this section:

Table 12. Vulnerable Points of Press Release Basin Section - 2 (P. 255/J.255) -Phase I

S	ecti	on	Panjang Pipa (m)
J-47	-	J-59	354.64
J-80	-	J-98	479.74
J-120	-	J-128	309.73
J-132	-	J-137	91.08
J. 143	-	J-172	1,023.49
J-229	-	J-251	618.17
	Tota	al	2,876.85
2		D	1.1. (2022)

Source: Processed data (2023)

c) In Section P. 255 (end of stage 1) - P. 601 using PVC pipe matrial Type RRJ-S10, the pressure that occurs exceeds 12.5 bar. With RRJ-S10 PVC pipes that are only able to withstand a maximum pressure of 12.5 bar, while the pressure that occurs at some points exceeds the ability of the pipe which causes the pipe to burst. The following is the location of the vulnerable points in this section:

Table 13. Vulnerable Points of Press Release Basin Section - 2 (P.255/J.255P.601/J.601) - Phase II

Section	Panjang Pipa (m)
J-397 - J-542	3,905.21
J-547 - J-571	1,030.46
Total	4,935.67

Source: Processed data (2023)

- d) Table 7. 2 Vulnerable Points of Press Release Tank Section 2 P. 255 (end of stage 1).
- e) In Section P. 601 (stage 3) P. 626 (stage 3) using PVC pipe material Type RRJ-S8, the maximum pressure that occurs is 13.11 bar. Based on the specifications of PVC pipe material Type RRJ-S8, the pressure that occurs is still below the ability of the pipe to withstand pressures up to 16 bar.
- f) In Section P. 626 (stage 3) P. 671 (stage 3) using HDPE PN16 pipe material, at some points the pressure exceeds 16 bar on the P. 646 - P. 653 network or 150.60 m long. The pressure that occurs is between 16.01 bar - 16.41 bar.
- g) In Section P. 671 (stage 3) P. 676 (stage 3) using PVC pipe matrial Type RRJ-S8, the pressure that occurs is still below the ability of the pipe to withstand pressures up to 16 bar.
- h) In Section P. 676 (stage 3) Tandon Kemiri (stage 3) using PVC pipe matrial Type RRJ-S10, the pressure that occurs is still below the ability of the pipe to withstand pressures up to 12.5 bar.

3.7. Analysis and Interpretation of Results

Based on the analysis of the existing distribution pipe network carried out, and based on the criteria and specifications of the pipe material in the following table:

Section J. 47 - J. 59 Eksisting Rencam A 1-47 829.61 2.076 12.47 1.348 13.45 1.347 1.348 13.45 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.342 1.444 1.356 1.342 1.444 1.337 1.342 1.348 82.89 3.217 1.236 1.241 1.337 1.343 <th rowspan="2">Patok Elevasi</th> <th>Floresi</th> <th>STA</th> <th>Baniang Bing (m)</th> <th>Duogours (hor)</th> <th colspan="2">Matrial Pipa</th> <th rowspan="2">Rencana Tambahan Aksesoris</th>	Patok Elevasi	Floresi	STA	Baniang Bing (m)	Duogours (hor)	Matrial Pipa		Rencana Tambahan Aksesoris	
1-47 829.61 2.076 1-48 819.66 2.084 1-49 808.23 2.135 1-50 794.89 2.175 1-51 800.93 2.214 1-52 810.79 2.230 1-55 818.21 2.239 1-55 818.21 2.230 1-55 818.21 2.230 1-55 818.21 2.230 1-57 824.45 2.331 1-58 822.67 2.313 1-57 824.45 2.331 1-58 823.84 2.385 1-59 837.60 2.431 1-80 828.54 3.200 1-84 828.59 3.241 1-83 820.42 3.357 1-84 818.59 3.284 1-84 818.59 3.284 1-84 805.65 3.306 1-84 818.59 3.284 1-90 790.36 3.401 1-91 796.82 3.433 1-92 791.96 3.460		51A	Panjang Pipa (m)	Pressure (bar)	Eksisting	Rencana			
1-48 819.66 2.084 13.45 1-49 808.23 2.130 14.56 14.56 1-51 800.93 2.214 15.26 15.26 1-53 810.79 2.230 13.56 14.29 1-53 811.398 2.249 13.56 13.56 1-55 818.21 2.280 13.56 13.56 1-57 82.445 2.315 13.12 11.64 56 822.67 2.385 12.99 12.41 1-80 828.54 3.200 12.41 13.36 1-81 828.99 3.217 12.36 14.421 1-84 818.59 3.284 16.21 14.54 1-87 802.43 3.357 14.94 13.37 1-88 797.45 3.373 15.43 16.22 1-90 790.36 3.401 180.02 15.43 16.12 1-91 796.82 3.433 16.22 15.45 19.91 1-94 761.00 3.537 15.43 13.09 19.16 19.16 </td <td>Section J.</td> <td>47 - J. 59</td> <td></td> <td>• •</td> <td></td> <td>•</td> <td></td> <td></td>	Section J.	47 - J. 59		• •		•			
J-49 808.23 2,130 14.56 J-50 794.89 2,175 15.86 15.86 J-52 810.79 2,230 14.29 14.29 J-53 812.08 2,249 13.56 14.29 J-54 813.98 2,249 13.56 13.56 J-55 818.21 2,280 13.56 13.12 J-57 824.57 2,311 13.12 1.44 J-58 823.84 2,385 12.99 1.53 1.64 J-80 828.54 3,201 12.31 1.64 1.64 J-81 828.59 3,284 12.31 1.231 1.44 1.454 1.454 J-84 818.59 3,284 1.421 1.454 1.45	J-47	829.61	2,076		12.47			-	
1-50 794.89 2,175 1-51 800.93 2,214 1-52 810.79 2,230 1-53 812.08 2,239 1-54 813.98 2,249 1-55 822.67 2,315 1-57 824.45 2,331 1-58 823.84 2,383 1-59 837.60 2,431 1-84 828.54 3,200 1-81 828.94 3,201 1-82 829.45 3,203 1-84 818.59 3,244 1-83 829.45 3,204 1-84 818.59 3,284 1-85 800.56 3,306 1-84 818.59 3,284 1-84 818.59 3,284 1-90 790.27 3,388 1-90 790.36 3,401 1-91 796.82 3,433 1-92 791.96 3,460 1-93 785.82 3,460 1-94 761.00 3,537 1-95 807.67 3,584	J-48	819.66	2,084		13.45			-	
1-51 800.93 2.214 1526 1-52 810.79 2.239 354.64 14.29 1-54 813.98 2.249 13.98 14.29 1-55 818.21 2.240 13.98 14.29 1-55 818.21 2.240 13.98 13.56 1-55 812.67 2.315 13.12 14.29 1-57 824.45 2.331 12.94 12.99 1-58 828.94 3.200 1.241 1.236 1-81 828.94 3.201 12.36 12.33 1-84 828.99 3.283 12.31 12.36 1-84 829.92 3.358 16.41 13.37 1-85 800.43 3.357 15.43 14.54 1-88 797.45 3.388 16.12 PVC RJ-S10 HDPE PN 16 1-93 785.82 3.492 15.43 13.95 14.31 1-94 761.00 3.537 15.43 13.95 14.39 1-95 827.04 3.663 14.39 12.48 <t< td=""><td>J-49</td><td>808.23</td><td>2,130</td><td></td><td>14.56</td><td rowspan="7">PVC RRJ-S10</td><td></td><td>-</td></t<>	J-49	808.23	2,130		14.56	PVC RRJ-S10		-	
1-52 \$10.79 2.230 354.64 14.29 PVC RRJ-S10 HDPE PN 16	J-50	794.89	2,175	_	15.86			-	
J-53 812.08 2.239 354.64 14.17 PVC RRJ-S10 HDPE PN 16 J-54 813.98 2.249 13.98 13.98 13.98 13.98 J-55 818.21 2.240 13.12 14.11	J-51	800.93	2,214		15.26			Trushblock	
1-54 813.98 2.249 13.98 13.98 13.98 1-55 818.21 2.280 13.12 1.164 1.1	J-52	810.79	2,230		14.29			-	
J-55 818.2.1 2.280 13.56 13.12 1 J-57 824.45 2.331 12.94 1 <td>J-53</td> <td>812.08</td> <td>2,239</td> <td>354.64</td> <td>14.17</td> <td>HDPE PN 16</td> <td>-</td>	J-53	812.08	2,239	354.64	14.17		HDPE PN 16	-	
1-56 822.67 2,315 13.12 12.94 1-57 823.84 2,335 12.99 1 1-58 823.84 2,385 12.99 1 1-80 828.54 3,200 11.64 1 1-81 828.99 3,217 12.31 1 1-82 829.45 3,243 12.31 1 1-84 818.59 3,284 14.21 1 1 1-85 806.56 3,306 14.21 1 1 1 1-87 802.43 3,337 15.43 1 1.612 1	J-54	813.98	2,249		13.98			-	
1-57 824.45 2,381 12.94 12.99 1 1-58 823.84 2,385 11.64 1 <td>J-55</td> <td>818.21</td> <td>2,280</td> <td></td> <td>13.56</td> <td></td> <td>-</td>	J-55	818.21	2,280		13.56			-	
1-58 823.84 2,385 12.99 11.64 1 1-59 837.60 2,431 11.64 1 <td>J-56</td> <td>822.67</td> <td>2,315</td> <td></td> <td>13.12</td> <td></td> <td></td> <td>-</td>	J-56	822.67	2,315		13.12			-	
$ \begin{array}{ c c c c c c } \hline 1.50 & 87.60 & 2.431 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c c } \hline 1.64 \\ \hline \begin{tabular}{ c c } \hline 1.65 \\ \hline \begi$	J-57	824.45	2,331		12.94			-	
Section J. 80 - J. 98 I-80 828.94 3,200 1-81 828.99 3,217 I-82 828.94 3,228 I-84 818.59 3,284 I-84 818.59 3,284 I-84 800,98 3,328 I-86 800,98 3,337 I-87 802.43 3,337 I-800,23 3,337 I-800,2 I-14.494 I-160,2 I-160,2 I-16.22 I-160,2 I-16.22 I-190 797.45 3,337 I-160,2 I-16.22 I-190 797.45 3,492 I-162,2 3,492 I-162,2 3,492 I-162,2 I-162,2 I-162,2 <th colsp<="" td=""><td>J-58</td><td>823.84</td><td>2,385</td><td></td><td>12.99</td><td></td><td> </td><td>-</td></th>	<td>J-58</td> <td>823.84</td> <td>2,385</td> <td></td> <td>12.99</td> <td></td> <td> </td> <td>-</td>	J-58	823.84	2,385		12.99			-
$ \begin{array}{ c c c c c c } \hline J-80 & 828.54 & 3,200 \\ \hline J-81 & 828.99 & 3,217 \\ J-82 & 829.45 & 3,243 \\ J-83 & 829.22 & 3,258 \\ J-84 & 818.59 & 3,284 \\ J-85 & 800.56 & 3,306 \\ \hline J-85 & 800.98 & 3,328 \\ J-85 & 800.243 & 3,337 \\ \hline J-87 & 802.43 & 3,337 \\ \hline J-87 & 802.43 & 3,337 \\ \hline J-88 & 797.45 & 3,373 \\ J-90 & 790.36 & 3,401 \\ J-91 & 796.82 & 3,433 \\ J-92 & 791.96 & 3,460 \\ J-92 & 791.96 & 3,460 \\ J-93 & 785.82 & 3,492 \\ \hline J-94 & 761.00 & 3,537 \\ \hline J-94 & 761.00 & 3,537 \\ J-95 & 807.67 & 3,584 \\ J-96 & 812.19 & 3,663 \\ J-96 & 812.19 & 3,663 \\ J-97 & 820.88 & 3,663 \\ J-97 & 820.88 & 3,663 \\ J-120 & 826.44 & 4,663 \\ J-120 & 826.44 & 4,663 \\ J-122 & 806.43 & 4,689 \\ J-124 & 813.15 & 4,867 \\ J-125 & 806.83 & 4,817 \\ J-126 & 831.15 & 4,867 \\ J-126 & 831.15 & 4,867 \\ J-127 & 830.01 & 4,916 \\ J-128 & 829.19 & 4,973 \\ \hline 11.90 \\ J-128 & 829.19 & 4,973 \\ \hline 11.90 \\ J-128 & 820.04 & 5,216 \\ J-136 & 820.04 & 5,216 \\ J-290 \\ \hline J-137 & 820.35 & 5,278 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			2,431		11.64				
J-81 828.99 3,217 J-82 829.45 3,243 J-83 829.22 3,258 J-84 818.59 3,284 J-85 800,56 3,306 J-86 809,98 3,328 I-87 802,43 3,337 J-88 797.45 3,373 J-89 789.27 3,388 J-90 790.36 3,401 J-91 796.82 3,433 199 791.96 3,460 J-92 791.96 3,613 J-94 761.00 3,537 J-95 807.67 3,584 J-96 812.19 3,613 J-97 820.88 3,663 J-98 827.04 3,680 J-120 826.44 4,663 J-121 813.68 4,677 J-122 820.43 4,689 J-123 821.94 4,679 J-124 782.88 4,779			_						
J-82 829.45 3,243 12.31 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 12.33 13.37 13.337 14.54 13.37 14.54 13.37 14.54 13.37 14.54 14.21 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 16.22 15.95 15.43 15.95 15.95 15.95 15.95 15.95 16.55 16.55 19.94 761.00 3,537 18.97 15.43 13.09 19.97 820.88 3,663 12.48 13.09 19.97 820.88 3,663 12.48 12.39 12.48 12.39 12.28 12.23 826.44 4,663 25.88 13.64 PVC RRJ.510 HDPE PN16 1 1 12.12 13.58 4,779 16.58 PVC RRJ.510 10.97 1 12.28 1.239 14.29 1 1 <t< td=""><td></td><td></td><td></td><td>4 </td><td></td><td>_</td><td></td><td>-</td></t<>				4		_		-	
$ \begin{array}{ c c c c c c } \hline J-83 & 829.22 & 3.258 \\ \hline J-84 & 818.59 & 3.284 \\ J-86 & 809.98 & 3.328 \\ J-86 & 809.98 & 3.328 \\ \hline J-87 & 802.43 & 3.357 \\ J-88 & 797.45 & 3.373 \\ J-89 & 789.27 & 3.388 \\ J-90 & 790.36 & 3.401 \\ J-91 & 796.82 & 3.433 \\ J-90 & 790.36 & 3.401 \\ J-91 & 796.82 & 3.433 \\ J-92 & 791.96 & 3.460 \\ J-93 & 785.82 & 3.492 \\ J-94 & 761.00 & 3.537 \\ \hline J-93 & 785.82 & 3.492 \\ J-95 & 807.67 & 3.584 \\ J-96 & 812.19 & 3.613 \\ J-96 & 812.19 & 3.613 \\ J-97 & 820.88 & 3.663 \\ J-98 & 827.04 & 3.680 \\ \hline J-97 & 820.88 & 3.663 \\ J-98 & 827.04 & 3.680 \\ \hline J-120 & 826.44 & 4.663 \\ J-121 & 813.68 & 4.677 \\ J-120 & 826.44 & 4.663 \\ J-122 & 783.53 & 4.740 \\ J-122 & 806.43 & 4.689 \\ J-123 & 785.83 & 4.759 \\ J-124 & 782.88 & 4.759 \\ J-125 & 806.43 & 4.689 \\ J-124 & 782.88 & 4.759 \\ J-125 & 806.43 & 4.689 \\ J-124 & 782.83 & 4.759 \\ J-125 & 806.43 & 4.689 \\ J-124 & 782.83 & 4.759 \\ J-126 & 831.15 & 4.847 \\ J-126 & 831.15 & 4.847 \\ J-127 & 830.01 & 4.916 \\ J-128 & 829.19 & 4.973 \\ \hline UDF PN16 & 1.291 \\ J-128 & 829.19 & 4.973 \\ \hline UDF PN16 & 1.291 \\ J-133 & 820.36 & 5.195 \\ J-135 & 820.04 & 5.216 \\ J-136 & 820.43 & 5.225 \\ J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.2291 \\ J-136 & 820.43 & 5.225 \\ J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.291 \\ J-138 & 820.43 & 5.225 \\ J-129 & J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.291 \\ J-138 & 820.43 & 5.225 \\ J-129 & J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.291 \\ J-138 & 820.43 & 5.225 \\ J-129 & J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.291 \\ J-138 & 820.43 & 5.225 \\ J-129 & J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.291 \\ J-138 & 820.43 & 5.225 \\ J-129 & J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.291 \\ J-138 & 820.43 & 5.225 \\ J-129 & J-137 & 826.63 & 5.278 \\ \hline UDF PN16 & 1.291 \\ J-138 & 816.85 & 5.451 \\ J-294 & J-294 \\ J-144 & 817.13 & 5.507 \\ J-294 & J-294 \\ J-294$								-	
J-84 818.59 3,284 156.41 13.37 PVC RRJ-SI0 HDPE PN 16 J-86 809,98 3,326 14.4.54 14.4.54 14.4.54 J-87 802.43 3,357 14.94 14.54 14.94 14.94 J-89 789.27 3,388 14.21 15.43 14.94 16.22 19.90 790.36 3,401 16.22 15.48 PVC RRJ-S10 HDPE PN 20 16.55 16.5								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				156.41		PVC RRJ-S10	HDPE PN 16	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						PVC RRJ-S10	HDPE PN20	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				100.00				-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	180.02				-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	
J-96 812.19 3,613 143.31 13.95 PVC RRJ-S10 HDPE PN16 J-97 820.88 3,663 12.48 13.09 PVC RRJ-S10 HDPE PN16 J-98 827.04 3,680 12.48 PVC RRJ-S10 HDPE PN16 J-120 826.44 4,663 25.88 13.64 PVC RRJ-S10 HDPE PN16 J-121 813.68 4,677 25.88 14.35 PVC RRJ-S10 HDPE PN16 J-123 783.53 4,740 70.32 16.58 PVC RRJ-S10 HDPE PN20 J-124 782.83 4,759 70.32 16.65 PVC RRJ-S10 .								-	
J-97 820.88 3,663 143.31 13.09 PVC RRJ-S10 HDPE PN16 J-98 827.04 3,680 12.48 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 12.08 12.08 12.08 12.08 12.08 12.08 12.08 12.08 12.08 12.08 12.08 12.08 12.01 12.01 12.01 12.01 12.01 12.01 12.01 12.08 12.08 12.09 12.09 12.09 12.09 12.09 12.09 12.09 12.09 12.09 12.91 12.91 12.91 12.91						PVC RRJ-S10	HDPE PN16	-	
J-98 827.04 3,680 12.48 Image: constraint of the symbolic degree in t				143.31				-	
Section J. 120 - J. 128 12.39 PVC RRJ-S10 HDPE PN16 J-121 813.68 4,677 25.88 13.64 PVC RRJ-S10 HDPE PN16								-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			3,680		12.48			-	
J-121 813.68 4,677 25.88 13.64 PVC RRJ-S10 HDPE PN16 J-122 806.43 4,689 14.35			1.000		12.20				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				25.99		PVC RRJ-S10	HDPE PN16	-	
J-123 783.53 4,740 70.32 16.58 PVC RRJ-S10 HDPE PN20 J-124 782.83 4,759 16.65 PVC RRJ-S10 HDPE PN20 1 J-125 806.83 4,817 14.29 PVC RRJ-S10 HDPE PN16 1 J-126 831.15 4,867 213.53 11.90 PVC RRJ-S10 HDPE PN16 1 J-127 830.01 4,916 12.01 PVC RRJ-S10 HDPE PN16 1 J-128 829.19 4,973 12.08 PVC RRJ-S10 HDPE PN16 1 Section J. 132 - J. 137 5,187 12.99 12.91 1 <td< td=""><td></td><td></td><td></td><td>25.88</td><td></td><td>-</td></td<>				25.88				-	
1-102 1-102 1-102 1-102 1-102 PVC RRJ-S10 1-125 806.83 4,817 14.29 PVC RRJ-S10 HDPE PN16 1-126 831.15 4,867 213.53 11.90 PVC RRJ-S10 HDPE PN16 1-127 830.01 4,916 12.01 PVC RRJ-S10 HDPE PN16 1-128 829.19 4,973 12.08 PVC RRJ-S10 HDPE PN16 5ection J. 132 - J. 137 5,187 12.09 12.91 PVC RRJ-S10 IDPE PN16 1-133 820.36 5,195 12.91 12.95 PVC RRJ-S10 IDPE PN16 1-135 820.04 5,216 12.99 12.90 IDPE PN16 IDPE PN16 1-136 820.43 5,225 12.90 IDPE PN16 IDPE PN16 5ection J. 143 - J. 172 IDPE PN16 IDPE PN16 IDPE PN16 IDPE PN16 1-143 816.85 5,451 13.21 PVC RRI-S10 HDPE PN16							HDDE DN20	-	
J-125 806.83 4,817 J-126 831.15 4,867 J-127 830.01 4,916 J-128 829.19 4,973 Section J. 132 - J. 137 12.08 J-132 821.57 5,187 J-133 820.36 5,195 J-134 819.91 5,202 J-135 820.04 5,216 J-136 820.43 5,225 J-137 826.63 5,278 Section J. 143 - J. 172 12.98 J-143 816.85 5,451 J-144 817.13 5,507				70.32		PVC RRJ-S10	HDPE PN20	-	
J-126 831.15 4,867 J-127 830.01 4,916 J-128 829.19 4,973 Section J. 132 - J. 137 12.08 J-132 821.57 5,187 J-133 820.36 5,195 J-134 819.91 5,202 J-135 820.04 5,216 J-136 820.43 5,225 J-137 826.63 5,278 Section J. 143 - J. 172 12.98 J-143 816.85 5,451 J-144 817.13 5,507								-	
J-127 830.01 4.916 213.53 12.01 PVC RRJ-510 HDPE PN16 J-128 829.19 4.973 12.08 12.08 12.08 12.08 Section J. 132 - J. 137 J-132 821.57 5,187 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.91 12.94 12.90 12.94 12.90 12.90 12.90 12.94 12.90 12.28 12.28 12.94 12.28 12.28 12.28 12.28 12.28 12.28 13.18 PVC RRI-S10 HDPE PN16 12.94 13.18 PVC RRI-S10 HDPE PN16 12.94 13.18 13.18 PVC RRI-S10 HDPE PN16 12.93 12.93 13.18 12.93 13.18 12.93 12.93<				4 -		PVC RRJ-S10	HDPE PN16	-	
J-128 829.19 4,973 12.08 Image: constraint of the system of the s				213.53				-	
Section J. 132 - J. 137 12.79 J-132 821.57 5,187 J-133 820.36 5,195 J-134 819.91 5,202 J-135 820.04 5,216 J-136 820.43 5,225 J-137 826.63 5,278 Section J. 143 - J. 172 12.28 J-143 816.85 5,451 J-144 817.13 5,507 129.84 13.18 PVC RRI-S10				4 -				-	
J-132 821.57 5,187 J-133 820.36 5,195 J-134 819.91 5,202 J-135 820.04 5,216 J-136 820.43 5,225 J-137 826.63 5,278 Section J. 143 - J. 172 12.28 J-143 816.85 5,451 J-144 817.13 5,507 129.84 13.18 PVC RRI-S10 HDPE PN16			4,973		12.08		I	-	
J-133 820.36 5,195 J-134 819.91 5,202 J-135 820.04 5,216 J-136 820.43 5,225 J-137 826.63 5,278 Section J. 143 - J. 172 12.98 J-143 816.85 5,451 J-144 817.13 5,507 129.84 13.18			5 1 9 7		12 70				
J-134 819.91 5,202 J-135 820.04 5,216 J-136 820.43 5,225 J-137 826.63 5,278 J-137 826.63 5,278 J-143 816.85 5,451 J-144 817.13 5,507 129.84 13.18				4 F		PVC RRJ-S10	HDPE PN16	-	
J-135 820.04 5,216 J-136 820.43 5,225 J-137 826.63 5,278 J-143 816.85 5,451 J-144 817.13 5,507 J29.84 13.18				91.08					
J-136 820.43 5,225 12.90 J-137 826.63 5,278 12.28 Section J. 143 - J. 172 13.21 13.21 J-143 816.85 5,451 13.21 J-144 817.13 5,507 129.84 13.18								-	
J-137 826.63 5,278 12.28 Section J. 143 - J. 172 13.21 13.21 J-143 816.85 5,451 13.21 J-144 817.13 5,507 129.84 13.18								-	
Section J. 143 - J. 172 J-143 816.85 5,451 13.21 J-144 817.13 5,507 129.84 13.18								-	
J-143 816.85 5,451 13.21 J-144 817.13 5,507 129.84 13.18 PVC RRL-S10 HDPE PN16			5,218		12.20			-	
J-144 817.13 5,507 129.84 13.18 PVC RRL-S10 HDPE PN16			5 / 51		13.21			-	
PVC RR1-S10 HDPE PN16				4 F		-		-	
	J-144 J-145	821.47	5,564	129.84	12.74	PVC RRJ-S10	HDPE PN16	-	
J-145 821.47 5,504 J-146 807.61 5,581 14.10				1 F		-		-	

Table 14. Analysis Results of Existing Replacement Material Specifications

ANALYSIS OF PIPE NETWORK OPTIMIZATION FOR RAW WATER IN JABUNG SUB-DISTRICT, MALANG DISTRICT

Putut Subandriyo, Laksono Djoko Nugroho, Haris Muhammadun

Patok Elevasi STA	ста	. Panjang Pipa (m)	Pressure (bar)	Matria	Rencana Tambahan		
				Eksisting	Rencana	Aksesoris	
J-147	793.50	5,624		15.47			-
J-148	793.45	5,632		15.48			-
J-149	787.42	5,664		16.06			-
J-150	788.31	5,685	1	15.97			-
J-151	778.93	5,709	1	16.89			-
J-152	786.39	5,757		16.15			-
J-153	789.97	5,775		15.80			-
J-154	790.56	5,812		15.73			-
J-155	783.03	5,832		16.47			-
J-156	782.02	5,854	(02.9)	16.56	DVG DDI G10		-
J-157	773.54	5,897	692.86	17.38	- PVC RRJ-S10	HDPE PN20	-
J-158	775.51	5,947		17.18	_	1	-
J-159	780.76	5,990	1	16.66			-
J-160	774.99	6,000		17.23			-
J-161	768.70	6,057		17.83			-
J-162	768.51	6,085	-	17.85			-
J-163	771.53	6,122		17.55			-
J-164	779.41	6,158	-	16.77	-		-
J-165	785.27	6,210	-	16.19			_
J-166	792.17	6,274	-	15.50			-
J-167	809.12	6,325		13.84	PVC RRJ-S10	HDPE PN16	-
J-168	797.29	6,352	-	14.99			_
J-169	805.54	6,387	-	14.18			-
J-170	816.40	6,435	200.79	13.11			_
J-171	820.53	6,450	-	12.70			_
J-172	824.98	6,474	-	12.26			-
	229 - J. 251						
J-229	822.31	8,157		12.27			-
J-230	818.47	8,186		12.64	PVC RRJ-S10	HDPE PN16	-
J-231	821.25	8,195		12.37			_
J-232	823.20	8,207		12.18			-
J-233	824.84	8,232		12.01			_
J-234	826.80	8,257		11.82			_
J-235	828.24	8,265		11.67			_
J-236	824.48	8,283	1 1	12.04			_
J-237	823.85	8,289	1	12.10			-
J-238	818.08	8,337	1 1	12.66			_
J-239	815.81	8,385	1	12.87			-
J-239 J-240	809.04	8,438	618.17	13.53			_
J-240 J-241	810.86	8,468		13.34			-
J-241 J-242	813.55	8,486		13.08			_
J-242 J-243	811.69	8,534		13.25			_
J-243 J-244	812.36	8,554		13.18			-
J-244 J-245	813.05	8,507		13.11			_
J-243 J-246	813.03	8,577		13.04			-
J-240 J-247	813.83	8,595		13.04	-		-
J-247 J-248	813.83	8,612		13.23	-		_
J-248 J-249	811.79	8,665	1 -	13.23	-		-
			1 -		-		
J-250	816.47	8,723		12.76	-		-

Patok Elevasi ST	STA	Panjang Pipa (m)	Pressure (bar)	Matria	Rencana Tambahan		
	SIA	ranjang ripa (m)		Eksisting	Rencana	Aksesoris	
J-454	779.02	14,431		15.56			-
J-455	778.24	14,445		15.63	_		-
J-456	777.27	14,453		15.73			-
J-457	774.11	14,497		16.03			-
J-458	774.56	14,527		15.98			_
J-459	774.49	14,547		15.98			_
J-460	772.99	14,559		16.13			_
J-461	771.21	14,579		16.30			_
J-462	770.69	14,598		16.35			-
J-463	775.22	14,613		15.90	_		-
J-464	778.82	14,646		15.55	_		-
J-465	776.69	14,653		15.75			-
J-466	775.92	14,697		15.82			_
J-467	774.66	14,714		15.94			_
J-468	771.08	14,753		16.29			-
J-469	772.18	14,774	1 1	16.18	-	HDPE PN20	-
J-470	772.88	14,807	765.22	16.10	PVC RRJ-S10		-
J-471	773.96	14,857	1 1	15.99			-
J-472	774.56	14,869		15.93			_
J-473	776.40	14,907		15.74			_
J-474	776.53	14,915		15.73			
J-475	775.24	14,958		15.85			
J-476	774.00	15,007		15.96			
J-477	774.07	15,046		15.95		HDPE PN16	_
J-478	772.52	15,056		16.10			
J-479	769.56	15,064		16.39			_
J-480	769.51	15,071	-	16.39	-		_
J-481	769.89	15,078		16.35			_
J-482	769.04	15,107		16.43	-		
J-483	779.14	15,135	-	15.44			_
J-484	775.28	15,145	4	15.82	-		_
J-485	778.29	15,154	-	15.52			_
J-486	782.20	15,189		15.13			
J-487	784.55	15,208		14.90			_
J-487	786.51	15,228		14.70	_		_
J-489	785.52	15,220	-	14.80			
J-490	787.67	15,311	-	14.58			_
J-491	787.59	15,332	-	14.58			
J-491 J-492	793.38	15,352		14.01			-
J-492 J-493	793.61	15,382		13.99			
J-493 J-494	793.01	15,382		13.99			_
J-494 J-495							-
J-495 J-496	792.88 793.65	15,415 15,438	1 F	14.05	-		-
J-496 J-497	793.65	15,438	1 F	13.97	-		-
J-497 J-498	793.79	15,456	1 F	13.96	PVC RRJ-S10		-
J-498 J-499	793.35	15,466	573.45	13.96			
J-499 J-500	793.35	15,490	573.45	13.84			-
	794.88						
J-501	797.90	15,527		13.54			-
J-502	800.19	15,544 15,568		13.50			-
J-503				13.31			-
J-504	804.23	15,598		12.91			-
J-505	803.46	15,619					-
J-506	803.92	15,630		12.94			-
J-507	806.27	15,647		12.71	-		-
J-508	805.28	15,657		12.80	-		-
J-509	803.85	15,665		12.94	-		-
J-510	803.57	15,673 15,722		12.97			-

ANALYSIS OF PIPE NETWORK OPTIMIZATION FOR RAW WATER IN JABUNG SUB-DISTRICT, MALANG DISTRICT

Putut Subandriyo, Laksono Djoko Nugroho, Haris Muhammadun

Patok Elevasi		CTA Dani	Denion a Dine (m)		Matria	Rencana	
FALOK ELEVASI STA	STA	Panjang Pipa (m)	Pressure (bar)	Eksisting	Rencana	Tambahan Aksesoris	
J-512	806.52	15,732		12.67			-
J-513	797.49	15,762		13.55			-
J-514	798.86	15,774		13.41			-
J-515	799.15	15,787		13.38			-
J-516	801.67	15,796		13.14			-
J-517	800.31	15,822		13.26			-
J-518	794.31	15,840		13.85	_		-
J-519	800.51	15,870		13.24	_		-
J-520	800.44	15,921		13.24	_		-
J-521	798.49	15,941		13.42	_		-
J-522	796.03	15,979		13.66			-
J-523	800.62	16,027		13.20	_		-
J-524	801.93	16,072		13.07			-
J-525	805.58	16,127		12.70			-
J-526	807.63	16,187	1,099.27	12.49	DVC DDI C10		-
J-527	811.48	16,219	1,099.27	12.11	PVC RRJ-S10	HDPE PN16	-
J-528	805.63	16,247		12.68	-		-
J-529	802.19	16,307		13.01			-
J-530	803.19	16,360		12.90			-
J-531	800.79	16,369		13.13			-
J-532	803.27	16,416		12.88			-
J-533	807.66	16,477		12.45			
J-534 J-535	805.85	16,536 16,591		12.61			-
J-535 J-536	810.62	16,601		12.14			-
J-530 J-537	810.02	16,618	-	12.14			-
J-537 J-538	807.61	16,644	-	12.43			-
J-539	815.07	16,700		11.69			
J-540	810.29	16,756		12.15			
J-541	812.34	16,809	-	11.94			-
J-542	811.97	16,862	-	11.97			-
				1107	Matrial Pipa		Rencana
Patok	Elevasi	STA	Panjang Pipa (m)	Pressure (bar)	Matria	u Pipa	Kencana Tambahan
Tatok	Lit vasi	SIA	i anjang i ipa (m)	Pressure (bar)	Eksisting	Rencana	Aksesoris
J-646	763.17	20,405		16.19			Trushblock
J-647	761.02	20,403	1 1	16.39	HDPE PN16		Trushblock
J-648	762.88	20,424	1 1	16.21			Trushblock
J-649	760.82	20,456		16.41			Trushblock
J-650	761.26	20,497	150.57	16.35			Trushblock
J-651	763.54	20,505		16.13			Trushblock
J-652	764.71	20,512		16.01			Trushblock
J-653	762.88	20,555		16.19			Trushblock

Source: Processed data (2023)

4. CONCLUSION

The conclusions obtained from the analysis of the Optimization of the Raw Water Distribution Pipe Network for Jabung Subdistrict are as follows:

- 1. The condition of the water discharge from the source to the service village shows that the available discharge at the coban siuk water source is $51.30 \, 1/$ dt, while the water needs of the population in the four villages that must be served are as follows:
 - a. maximum daily demand in 2041 (20-year projection) pandansari lor village of 8.47 l/dt, argosari village of 5.41 l/dt, gading kembar village of 7.27 l/dt, and kemiri gede of 8.34 l/dt.
 - b. clean water demand at peak hours in 2041 (20-year projection) pandansari lor village amounted to 11.55 l/dt, argosari village 7.37 l/dt, gading kembar village 9.91 l/dt, and kemiri gede village 11.37 l/dt.
- 2. The existing condition of the distribution pipeline from the source to the service village is in very extreme topographic conditions (slopes, cliffs and a little steep) with a height difference from taking water sources to the service area of \pm 300 m, where the elevation of the Coban Siuk Taji tendon is + 1003.03 m, the elevation of pandansari lor village is + 700.81 m, the elevation of twin ivory village is + 654.77 m, the elevation of argosari village is + 686.38 m, and the elevation of kemiri gede village is + 852.05m.
- 3. The installed distribution pipe material is not in accordance with the existing hydraulic conditions, this is based on the results of the hydraulic analysis of existing conditions using the help of the WATERCAD V8.i program, it can be seen that the PVC RRJ S-10 pipe matrial with a maximum pipe strength of only up to 12.5 bar is not able to withstand the hydraulic pressure that occurs as evidenced by the results of the flow test that occurred rupture(Wulandari and Santosa 2021).

ADVICE

Based on the results of the existing hydraulic analysis, it is necessary to do:

- 1. The accuracy of water demand calculation data is very helpful so that exploitation of existing water sources will not occur in the future.
- 2. The availability of topographic data is needed in analyzing the raw water distribution pipe network(Yuris Permana, n.d.).
- 3. It is necessary to repair the pipe at a critical point by replacing the PVC pipe with HDPE pipe (PN 16 and PN 20) from the siuk reservoir to the kemiri gede reservoir and the construction of taping to Gading Kembar Village and Argosari Village, while for Pandansari Lor village services, it continues to use the old route by replacing the pipe with appropriate specifications at several critical points.

REFERENCES

Amin, Muh Nur asri. 2022. "Optimasi Layanan Air Baku Dan Irigasi Embung Kawari Kabupaten Jeneponto." Jurnal Penelitian Enjiniring 25 (1): 30–36. https://doi.org/10.25042/jpe.052021.04.

- Ary Sulistyarso, Gembong. n.d. "Optimasi Ketersediaan Air Baku Untuk Air Bersih Di Kabupaten Sambas."
- Badan Standarisasi Nasional. 2008. "Standar Nasional Indonesia 6774: 2008 Tentang Tata Cara Perencanaan Unit Paket Instalasi Pengolahan Air." Bandung: BSN, 24. https://www.nawasis.org/portal/digilib/read/sni-6774-2008-tata-cara-perencanaanunit-paket-instalasi-pengolahan-air/51431.
- Berkelanjutan, Jurnal Teknologi, Dwi Cahya Rada, Radianta Triatmadja, and Johan Syafri Mahathir. 2021. "Sebuah Review: Evaluasi Dan Optimasi Jaringan Perpipaan Air Bersih." Sustainable Technology Journal) 8 (1): 8–15. http://jtb.ulm.ac.id/index.php/JTB.
- "Haestad Methods." 1999. World Pumps 1999 (388): 52. https://doi.org/10.1016/s0262-1762(99)80641-5.
- Indonesia, Standar Nasional, and Badan Standardisasi Nasional. 2002. "Pipa PVC Untuk Saluran Air Minum." Sni 06-0084-2002.
- Muhammadiyah Jember, Universitas, Delfi Siska Novianti, Noor Salim, and Rusdiana Setyaningtias. 2022. "Perencanaan System Jaringan Pipa Air Bersih Di Desa Wringinagung Dengan Menggunakan Software Epanet Planing a Pipe Network System For Clean Water In Wringinagung Village Using Epanet Software." Jurnal Smart Teknologi 3 (6): 652–60.
- Natara, Habel Robinson. 2018. "Perencanaan Distribusi Air Bersih Kecamatan Loura Kabupaten Sumba Barat Daya – NTT." Fakultas Teknik Sipil Dan Perencanaan Institut Teknologi Nasional Malang, 1–96.
- Pahude, Mansur S. 2022. "Analisis Kebutuhan Air Bersih Di Desa Santigi Kecamatan Tolitoli Utara Kabupaten Tolitoli." Jurnal Inovasi Penelitian 03 (02): 4801–10.
- Perencanaan, Studi, Perluasan Spam, Jaringan Perpipaan, Desa Sambigede, Kecamatan Binangun, Kabupaten Biitar, Yuris Permana, et al. n.d. "Piping Network Spam Expansion Planning Study Sambigede Village, District. Binangun, Blitar Regency." http://journal.unita.ac.id/index.php/daktilitas/.
- Permenkes. 2010. "Permenkes No. 492 Tahun 2010 Tentang Persyaratan Kualitas Air Minum." Https://Www.Kesehatanlingkungan.Com/2019/01/Permenkes-492-Tahun-2010-Persyaratan.Html. file:///C:/Users/Asus/Downloads/Permenkes No. 492 tahun 2010 tentang Persyaratan Kualitas Air Minum.pdf.
- PIPEFLOW.CO.UK. 2017. "Hazen-Williams Formula." Hazen-Williams Formula.
- PUPR, Kementrian. 2017. "Ditjen Cipta Karya 2000." Journal of Chemical Information and Modeling 53 (9).
- Rembulan, Glisina Dwinoor, Julliete Angel Luin, Vri Julianto, and Giovandri Septorino. 2020. "Optimalisasi Panjang Jaringan Pipa Air Bersih Di Dki Jakarta Menggunakan Minimum Spanning Tree." Jurnal INTECH Teknik Industri Universitas Serang Raya 6 (1): 75–87. https://doi.org/10.30656/intech.v6i1.2164.
- Risdiyanto, Awan, Dan Muhammad Harliansyah, Balai Wilayah Sungai, Kalimantan Iii, and Kalimantan Selatan. n.d. "Pemilihan Diameter Pipa Untuk Optimasi Usia Layan Pipa Hdpe Dalam Perencanaan Sistem Transmisi Air Baku Intake Linuh Di Kabupaten Tapin." www.intakindojatim.org/prosidingfintek.

Santosa, Budi. 2020. "Analisa Optimasi Diameter Jaringan Pipa Distribusi Air Bersih Dengan Menggunakan Software Epanet, Lingo Di Jalur Sentul City Pdam Tirta Kahuripan Kabupaten Bogor, Jawa Barat." Vol. 14.

Sugiyono. 2019. Sugiyono. Ekp.

Sugiyono, D. 2008. "Metode Penelitian Kuatintatif, Kualitatif Dan R & D / Sugiyono." Bandung: Alfabeta.

Wulandari, Retno Dwi, and Budi Santosa. 2021. "Analisis Jaringan Pipa Distribusi Air Bersih Perumahan Golden Vienna 1 Dan 2 Kota Tangerang Selatan." Jurnal Ilmiah Desain & Konstruksi 20 (1): 84–97. https://doi.org/10.35760/dk.2021.v20i1.3410.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).