Effect of Mercerisation Soaking Time and Concentration on Tensile Properties of Pentaclethra macrophylla Fibre Reinforced Composite for Automotive Application
Main Article Content
Chikelu Peter Okechukwu*
Ilechukwu Anthonia Ekene
Anyaora Sunday Chimezie
Okafor Anthony Amaechi
Okoye Chibuzor Ndubuisi
Lately, there has been a growing global awareness about the negative impact of synthetic fibres and the need for replacement with eco-friendly, plant-based natural fibres. However, the hydrophilic nature of these natural fibres can create compatibility issues with various matrices, which limits their use. This has sparked an increased research interest in finding an effective mercerization process to modify the surface of these plant-based fibres, ultimately enhancing their mechanical properties. In this study, fruit fibres from the Pentaclethra macrophylla plant was processed, experimented with NaOH soaking times of 1 hour, 3 hours, and 5 hours, along with treatment concentrations of 2%, 5%, and 8% by weight. The tensile properties of the composite made from these processed fibres were examined, and statistical analysis using one-way analysis of variance (ANOVA) and regression in Minitab software was conducted. The results showed a 21% decrease in tensile strength and a 32% increase in elastic modulus as the soaking time increased from 1 hour to 5 hours. Additionally, increasing the NaOH treatment concentration from 2% to 8% led to enhancements in both tensile strength and elastic modulus. This study shows that the tensile properties of the fiber composite are greatly impacted by both the soaking time and NaOH concentration. Therefore, optimising the parameters of the mercerisation process can enhance these properties, making the Pentaclethra M. fibre-reinforced composite a viable option for automotive applications.
Adeyi, A. J., Adeyi, O., Oke, E. O., Olalere, O. A., Oyelami, S., & Ogunsola, A. D. (2021). Effect of varied fiber alkali treatments on the tensile strength of Ampelocissus cavicaulis reinforced polyester composites: Prediction, optimization, uncertainty and sensitivity analysis. Advanced Industrial and Engineering Polymer Research, 4(1). https://doi.org/10.1016/j.aiepr.2020.12.002
Amir, N., Abidin, K. A. Z., & Shiri, F. B. M. (2017). Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Engineering, 184. https://doi.org/10.1016/j.proeng.2017.04.140
Andrew, J. J., & Dhakal, H. N. (2022). Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical review. In Composites Part C: Open Access (Vol. 7). https://doi.org/10.1016/j.jcomc.2021.100220
Aryadoust, V. (2022). Standard deviation, standard error of the mean, & confidence Intervals. YouTube. https://www.youtube.com/watch?v=i_O4GQ3t09g
Baccouch, W., Ghith, A., Yalcin-Enis, I., Sezgin, H., Miled, W., Legrand, X., & Faten, F. (2020). Enhancement of fiber-matrix interface of recycled cotton fibers reinforced epoxy composite for improved mechanical properties. Materials Research Express, 7(1). https://doi.org/10.1088/2053-1591/ab6c04
Baskaran, P. G., Kathiresan, M., & Pandiarajan, P. (2022). Effect of Alkali-treatment on Structural, Thermal, Tensile Properties of Dichrostachys Cinerea Bark Fiber and Its Composites. Journal of Natural Fibers, 19(2). https://doi.org/10.1080/15440478.2020.1745123
Beer, F., Johnston, E., & DeWolf, J. (1999). Mechanics of materials. McGraw-Hill.
Bezazi, A., Belaadi, A., Bourchak, M., Scarpa, F., & Boba, K. (2014). Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Composites Part B: Engineering, 66. https://doi.org/10.1016/j.compositesb.2014.05.014
Bhagat, M. S., Jadhav, V. D., Kulkarni, S. K., Satishkumar, P., & Saminathan, R. (2024). Comparative analysis of alkali-treated natural fibres for improved interfacial adhesion in composite materials. Interactions, 245(1), 206. https://doi.org/10.1007/s10751-024-02041-6
Elsheikh, A. H., Panchal, H., Shanmugan, S., Muthuramalingam, T., El-Kassas, A. M., & Ramesh, B. (2022). Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. In Cleaner Engineering and Technology (Vol. 8). https://doi.org/10.1016/j.clet.2022.100450
Fatra, W., Rouhillahi, H., Helwani, Z., Zulfansyah, & Asmura, J. (2016). Effect of alkaline treatment on the properties of oil palm empty fruit bunch fiber-reinforced polypropylene composite. International Journal of Technology, 7(6). https://doi.org/10.14716/ijtech.v7i6.3675
Hassan, A., Isa, M. R. M., Ishak, Z. A. M., Ishak, N. A., Rahman, N. A., & Salleh, F. M. (2018). Characterization of sodium hydroxide-treated kenaf fibres for biodegradable composite application. High Performance Polymers, 30(8). https://doi.org/10.1177/0954008318784997
Hoang, V. T., Pham, T. N., & Yum, Y. J. (2020). Mechanical properties of coconut trunk particle/polyester composite based on alkali treatment. Advanced Composites Letters, 29. https://doi.org/10.1177/2633366X20935891
Hosseini, S. B., Gaff, M., Li, H., & Hui, D. (2023). Effect of fiber treatment on physical and mechanical properties of natural fiber-reinforced composites: A review. In Reviews on Advanced Materials Science (Vol. 62, Issue 1). https://doi.org/10.1515/rams-2023-0131
Ismojo, Zahidah, K. A., Yuanita, E., Kustiyah, E., & Chalid, M. (2019). Tensile Properties of Kenaf Fiber by Alkalinization Treatment: Effect of different concentration. IOP Conference Series: Materials Science and Engineering, 703(1). https://doi.org/10.1088/1757-899X/703/1/012030
Jamilah, U. L., & Sujito, S. (2021). The Improvement Of Ramie Fiber Properties As Composite Materials Using Alkalization Treatment: Naoh Concentration. Jurnal Sains Materi Indonesia, 22(2). https://doi.org/10.17146/jsmi.2021.22.3.6182
Khalid, M. Y., Al Rashid, A., Arif, Z. U., Ahmed, W., Arshad, H., & Zaidi, A. A. (2021). Natural fiber reinforced composites: Sustainable materials for emerging applications. In Results in Engineering (Vol. 11). https://doi.org/10.1016/j.rineng.2021.100263
Laksono, A. D., Faisyal, M., Kurniawati, D. M., Awali, J., Ramadhan, G., & Rozikin, M. N. (2021). Improved mechanical properties with the soaking time of NaOH in composites made from sugarcane bagasse fibers for future windmill blades material. IOP Conference Series: Materials Science and Engineering, 1034(1). https://doi.org/10.1088/1757-899x/1034/1/012136
Loganathan, T. M., Sultan, M. T. H., Ahsan, Q., Jawaid, M., & Shah, A. U. M. (2022). Comparative Study of Mechanical Properties of Chemically Treated and Untreated Cyrtostachys Renda Fibers. Journal of Natural Fibers, 19(13). https://doi.org/10.1080/15440478.2021.1902900
Neto, J., Queiroz, H., Aguiar, R., Lima, R., Cavalcanti, D., & Banea, M. D. (2022). A review of recent advances in hybrid natural fiber reinforced polymer composites. In Journal of Renewable Materials (Vol. 10, Issue 3). https://doi.org/10.32604/jrm.2022.017434
Onwuzuruike, U., Inyang, U. E., Peter, E.-N., Solomon, A., Iguh, B., & Ihemeje, C. (2024). Characterization of Edible Oils from Different Varieties of African Oil Bean Seeds. Asian Science Bulletin, 2(4), 361–374. https://doi.org/10.3923/asb.2024.361.374
Pratama, M. I., Sugiman, S., Catur, A. D., & Hilton, A. (2024). Effects of Alkali (NaOH) Treatment of Banana Bunch Fiber (Musa Paradisiaca) on the Tensile Properties of Banana Bunch Fiber/Unsaturated Polyester Composites. CHEMICA: Jurnal Teknik Kimia, 11(1). https://doi.org/10.26555/chemica.v11i1.222
Raharjo, R., Darmadi, D. B., Gapsari, F., Setyarini, P. H., & Alamsyah, F. A. (2024). Modification Of Woven Dendrocalamus Asper In Composite Applications. International Journal of Mechanical Engineering Technologies and Applications, 5(2), 174–185. https://doi.org/10.21776/MECHTA.2024.005.02.6
Salih, A. A., Zulkifli, R., & Azhari, C. H. (2020). Tensile properties and microstructure of single-cellulosic bamboo fiber strips after Alkali treatment. Fibers, 8(5). https://doi.org/10.3390/FIB8050026
Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of Natural Fibers and Its Composites: An Overview. Natural Resources, 07(03). https://doi.org/10.4236/nr.2016.73011
Sanjay, M. R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C. I., & Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. In Carbohydrate Polymers (Vol. 207). https://doi.org/10.1016/j.carbpol.2018.11.083
Shamsuri, A. A., & Darus, S. A. A. Z. M. (2020). Statistical Analysis of Tensile Strength and Flexural Strength Data from Universal Testing Machine. Asian Journal of Probability and Statistics. https://doi.org/10.9734/ajpas/2020/v9i330230
Sherwani, S. F. K., Sapuan, S. M., Leman, Z., Zainudin, E. S., & Khalina, A. (2022). Effect of alkaline and benzoyl chloride treatments on the mechanical and morphological properties of sugar palm fiber-reinforced poly(lactic acid) composites. Textile Research Journal, 92(3–4). https://doi.org/10.1177/00405175211041878
Yudiono, H., Siregar, J. P., Asri, S., Hidayat, H., Chikam, D. B., Aprilian, J. A., Supriyadi, T. A., Cionita, T., & Fitriyana, D. F. (2024). Effect of Alkalization Time on the Toughness and Strength of Jute Sack Waste Lamina Composite as an Alternative Car Bumper Material. International Journal of Automotive and Mechanical Engineering, 21(4). https://doi.org/10.15282/ijame.21.4.2024.6.0909