ANALYSIS OF PARABOLIC EQUATION (RAMGEO) PROPAGATION MODEL IN NORTH NATUNA SEA
Main Article Content
The waters of the North Natuna Sea are one of Indonesia's conflict-prone maritime areas, frequently traversed by foreign vessels due to its direct border with several neighboring countries, necessitating effective maritime security assurance. To ensure this security, meticulous sea control and surveillance, particularly through the utilization of monitoring tools such as SONAR to detect foreign objects traversing or entering the North Natuna Sea waters, are required. This research aims to analyze the characteristics of underwater acoustic wave propagation patterns, particularly in the formation of silent areas or Shadow Zones, using the Parabolic Equation method (RAMGeo). Parabolic Equation propagation model (RAMGeo) simulations are conducted utilizing the AcTUP v2.2L Toolbox. Temperature and salinity data against depth obtained from Marine Copernicus for one year are utilized in this study, spanning from January 1, 2023, to December 31, 2023, encompassing both the west and east monsoon seasons. Sound propagation velocity calculations are based on the empirical Medwin equation, with a focus on a source depth of 10 meters at frequencies of 100 and 1,000 Hz in the North Natuna Sea. Simulation results indicate that both the west and east monsoon seasons exhibit similar and dense underwater acoustic wave propagation patterns. At a frequency of 100 Hz, the Transmission Loss ranges between 30 to 60 dB, with Shadow Zone areas extending from 0 - 500 meters and from 500 - 1,500 meters. Meanwhile, at a frequency of 1,000 Hz, the Transmission Loss ranges between 30 to 70 dB, with almost no Shadow Zone area present.
Adikara, A. P. B., Zuhdi, M. L., & Purwanto, W. H. (2021). Analysis of intelligence mobilization methods in the implementation of the deradicalization program by BNPT. Sociology: Journal of Social Sciences, 18(1), 61-71.
Agustinus, W.S. Pranowo, H.M. Manik, A. Rahmatullah, T. Aji. (2023). Relationship between water mass characteristics to sound velocity profiler (SVP) from South China Sea and Indonesian Throughflow Currents in Sulawesi Sea.. Depik Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan, 12(3): 346-353.
Agustinus. (2016). Study on Water Mass Characteristics to Determine the Shadow Zone in the Makassar Strait. J. Chart Datum, 2(2) : 69-78.
Badihi, F. A. (2021). Description of Sound Speed and Movement of Acoustic Waves in the Makassar Strait. 1–45.
Collins, M. D. (1993). A split-step Pade solution for the parabolic equation method, J. Acoust. Soc. Am., 93, 1936-1942.
Defrianto., & Pratama, N. (2019). Determination of the shadow zone area in the ocean computationally by simulating the propagation of acoustic rays. Proceedings of SNFUR-4, 1(1), 1-5.
Duncan, A. J., & Maggi, A. L. (2006). A consistent, user friendly interface for running a variety of underwater acoustic propagation codes. Proceedings of ACOUSTICS 2006, (20-22), 471-477.
Etter P.C. (2003). Underwater Acoustic Modelling and Simulation. London. CRC Press.
Fadika, U., Rifai, A., & Rochaddi, B. (2014). The direction and speed of seasonal winds and their relationship with the distribution of sea surface temperature in the south of Pangandaran, West Java. Journal of Oceanography, 3(3), 429-437. Retrieved from https://ejournal3.undip.ac.id/index.php/joce/article/view/5881.
Harianto, P. A., W, T. E., & Yumm, R. H. (2020). The influence of environmental conditions on the ability of kri sonar to detect underwater contact. Journal of Marine: Indonesian Journal of Marine Science and Technology, 13(1), 1–10. https://doi.org/10.21107/jk.v13i1.5845
Hidayat, R., Subardjo, P., Ismanto, A., Department, ), Marine, I., & Fisheries, F. (2015). Sea surface temperature variability on the north coast of Semarang using Fashionable Aqua satellite imagery. Journal of Oceanography, 4(1), 166–170. http://ejournal-s1.undip.ac.id/index.php/jose
Hutabarat, S., & Evans, S. M. (1985). Introduction to oceanography. Universitas Indonesia. Jakarta.
Ilahude, A. G. (1997). Distribution of temperature, salinity, sigma-T and nutrients in the waters of the South China Sea. In:Suyarso (ed.). Oceanographic atlas of the South China Sea. Center for Oceanology Research and Development, LIPI Jakarta. pp.: 25-34.
Irwan, Y., & Syam, I. I. (2013). Pengujian Transmission Loss pada Papan Serat Sabut Kelapa dan Aluminium Hollow Bar dengan Matriks Gypsum. Rekayasa dan Aplikasi Teknik Mesin di Industri Teknik, ITENAS, Bandung.
Jensen, F.B., W.A. Kuperman, M. B. Porter, H. Schmidt. (1994). Computational Ocean Acoustics. AIP Press. New York.
Lalita, R. K., Manik, H. M., & Brojonegoro, I. S. (2024). Underwater Acoustic Propagation using Monterey-Miami Parabolic Equation in Shallow Water Kayeli Bay Buru Distric. Journal of Applied Geospatial Information, 7(2), 1086–1091. https://doi.org/10.30871/jagi.v7i2.2802.
Mahardhika, A. Y., & Brodjonegoro, I. S. (2013). Modeling the mapping of the location of the shadow zone with. International Conference for Environmental Research and Technology, 1–18.
Medwin, H. (1975). Speed of sound in water: a simple equation forrealistic parameter. Journal of the Acoustical Society of America 58: 1318-19.
Novianto, R. D., Firmansyah, D. A., & Pratama, N. A. (2020). Dispute Resolution in the North Natuna Sea. 3. 3, 69-78.
Pravitasari, D. D. (2010). Analysis of the Kraken Propagation Model on Underwater Acoustic Signal Transmission. Thesis. Sepuluh Nopember Institute of Technology. Surabaya.
Romauli, S. and N. (2016). Sound Propagation in Water in Bengkulu Sea Waters Using the ODE (Ordinary Differential Equation) Model. SYMMETRY, Indonesian Journal of Physical Sciences, 2, 63–67.
Schlitzer, R., Schlitzer, Reiner. (2022). Ocean Data View. Software.
Sudarto. (2011). Utilization and Development of Wind Energy for Salt Production Process in Eastern Indonesia. Triton Journal, 7(2), 61–70.
Suharyo, O. S., Adrianto, D., & Hidayah, Z. (2018). Pengaruh Pergerakan Massa Air Dan Distribusi Parameter Temperatur, Salinitas Dan Kecepatan Suara Pada Komunikasi Kapal Selam. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 11(2), 104-112.
Supiyati, S Romauli N. (2016). Sound propagation in water in the waters of the Bengkulu Sea uses the ODE (Ordinary Differential Equation) model. SYMMETRY, Indonesian Journal of Physical Sciences. 2(2): 63-67.
Wijaya, T. H. (2010). Analysis of Bellhop Propagation Model on Underwater Acoustic Signal Transmission. Thesis. Sepuluh Nopember Institute of Technology. Surabaya.
Triatmodjo, B. (1999). Teknik Pantai. Yogyakarta: Beta Offset Publisher.
Urick, R.J. (1983). Principles of Underwater Sound. 3rd edition. New York: Peninsula Publishing.
Winanta, J., Kuswardani, A. R. T. D., Setiadi, H., & Riyadi, N. (2015). Thermoclin Layer Study to Determine Sound Wave Propagation Patterns. Journal of Chart Datum, 1(2), 143–150. https://doi.org/10.37875/chartdatum.v1i2.112.
Wu, S., Li, Z., Qin, J., Wang, M., & Li, W. (2022). The Effects of Sound Speed Profile to the Convergence Zone in Deep Water. Journal of Marine Science and Engineering, 10(3). https://doi.org/10.3390/jmse10030424