EXISTENCE AND OPTIMAL CONTROL ANALYSIS OF HIV/AIDS MODEL
Main Article Content
Human Immunodeficiency Virus/ Acquired Immune Deficiency Syndrome (HIV/AIDS) stands as a paramount global health concern, being both a prevalent sexually transmitted disease and one of the most catastrophic epidemics ever recorded, with profound impacts on human health. This study revisits the theme of Odebiyi et al. The study presents a mathematical model describing HIV/AIDS transmission dynamics, incorporating optimal control strategies for public sensitization and the use of antiretroviral treatment thereby providing new insight to their work. Analytical results via optimal control theory confirm the existence of optimal solutions. Numerical Simulation results illustrate the efficacy of public sensitization and treatment in controlling HIV/AIDS. The combined implementation of these control measures yields significant reductions in HIV transmission. The analysis underscores the importance of multi-faceted HIV control strategies. Our findings are expected to inform policymakers in developing targeted interventions, optimizing resource allocation, and enhancing the impact of HIV control programs.
Abidemi, A., Olaniyi, S., & Adepoju, O. A. (2022). An explicit note on the existence theorem of optimal control problem. J. Phys. Conf. Ser, 2199, 12021.
Adepoju, O. A., Ibrahim, H., & Salahu, W. O. (2024). Mathematical Assessment And Stability Analysis Of Hiv/Aids Epidemic Model With Vertical Transmission And Treatment. Transpublika International Research In Exact Sciences, 3(4), 1–20.
Akudibillah, G., Pandey, A., & Medlock, J. (2018). Optimal control for HIV treatment. Math. Biosci. Eng, 16(1), 373–396.
Bräu, N., Salvatore, M., Ríos-Bedoya, C. F., Fernández-Carbia, A., Paronetto, F., Rodríguez-Orengo, J. F., & Rodríguez-Torres, M. (2006). Slower fibrosis progression in HIV/HCV-coinfected patients with successful HIV suppression using antiretroviral therapy. Journal of Hepatology, 44(1), 47–55.
Chazuka, Z., Madubueze, C. E., & Mathebula, D. (2024). Modelling and analysis of an HIV model with control strategies and cost-effectiveness. Results in Control and Optimization, 14, 100355.
Fauziah, I., Manaqib, M., & Zhafirah, E. M. (2024). Mathematical Modeling of HIV/AIDS Disease Spread with Public Awareness. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 9(1), 50–65.
Fleming, W., Rishel, R., Fleming, W., & Rishel, R. (1975). Stochastic Differential Equations and Markov Diffusion Processes. Deterministic and Stochastic Optimal Control, 106–150.
Gurmu, E. D., Bole, B. K., & Koya, P. R. (2020). Mathematical modelling of HIV/AIDS transmission dynamics with drug resistance compartment. American Journal of Applied Mathematics, 8(1), 34–45.
Heath K, Levi J, Hill A. The Joint United Nations Programme on HIV/AIDS 95–95–95 targets: worldwide clinical and cost benefits of generic manufacture.
AIDS 2021;35(1):S197–203.
Ibrahim, I. A., Daniel, E. E., Danhausa, A. A., Adamu, M. U., Shawalu, C. J., & Yusuf, A. (2021). Mathematical Modelling of Dynamics of HIV Transmission Depicting the Importance of Counseling and Treatment. Journal of Applied Sciences and Environmental Management, 25(6), 893–903.
Iddi, A. J., Massawe, E. S., & Makinde, O. D. (2012). Modelling the impact of infected immigrants on vector-borne diseases with direct transmission. ICASTOR Journal of Mathematical Sciences, 6(2), 143–157.
Odebiyi, O. A., Oladejo, J. K., Elijah, E. O., Olajide, O. A., Taiwo, A. A., & Taiwo, A. J. (2024). Mathematical Modeling on Assessing the Impact of Screening on HIV/AIDS Transmission Dynamics. Journal of Applied Sciences and Environmental Management, 28(8), 2347–2357.
Okosun, K. O., Makinde, O. D., & Takaidza, I. (2013). Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Applied Mathematical Modelling, 37(6), 3802–3820.
Okyere, E., Olaniyi, S., & Bonyah, E. (2020). Analysis of Zika virus dynamics with sexual transmission route using multiple optimal controls. Scientific African, 9, e00532.
Olaniyi, S., Okosun, K. O., Adesanya, S. O., & Lebelo, R. S. (2020). Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis. Journal of Biological Dynamics, 14(1), 90–115.
Pontryagin, L. S. (2018). Mathematical theory of optimal processes. Routledge.
Rabiu, M., Willie, R., & Parumasur, N. (2021). Optimal control strategies and sensitivity analysis of an hiv/aids-resistant model with behavior change. Acta Biotheoretica, 69, 543–589.
Shabani, I., Massawe, E. S., & Makinde, O. D. (2011). Modelling the effect of screening on the spread of HIV infection in a population with variable inflow of infective immigrants. Scientific Research and Essays, 6(20), 4397–4405.
Silva, C. J., & Torres, D. F. M. (2017). Modeling and optimal control of HIV/AIDS prevention through PrEP. ArXiv Preprint ArXiv:1703.06446.
Sule, A., & Abdullah, F. A. (2014). Optimal control of HIV/AIDS dynamic: Education and treatment. AIP Conference Proceedings, 1605(1), 221–226.
UNAIDS. (2002). Paediatric HIV Infection and AIDS : UNAIDS point of view. https://www.unaids.org/en/resources/documents/2002/20020814_jc750-paediatric-pov_en.pdf
van Sighem, A. I., van de Wiel, M. A., Ghani, A. C., Jambroes, M., Reiss, P., Gyssens, I. C., Brinkman, K., Lange, J. M. A., de Wolf, F., & Group, A. C. S. (2003). Mortality and progression to AIDS after starting highly active antiretroviral therapy. Aids, 17(15), 2227–2236.
Zhao, Y., Elattar, E. E., Khan, M. A., Asiri, M., & Sunthrayuth, P. (2022). The dynamics of the HIV/AIDS infection in the framework of piecewise fractional differential equation. Results in Physics, 40, 105842.