Environmental Impact Analysis of Biogas Production Using Life Cycle Assessment (LCA) Towards Net Zero Emissions
Main Article Content
Aulia Putri Fatiha
Muniroh*
Shofa Aulia Aldhama
The dairy cattle sector in Indonesia significantly contributes to greenhouse gas (GHG) emissions, particularly methane (CH₄). This study aims to analyze the environmental impacts of biogas production using the Life Cycle Assessment (LCA) approach. Data was collected from several biogas projects in Central Java and Yogyakarta, then analysed using OpenLCA software with cradle-to-grave system boundaries. The analysis was conducted using the Life Cycle Assessment (LCA) approach to assess the environmental impact at each stage of the life cycle, from raw material collection and production processes to utilisation and final disposal. In addition, supporting data was collected through interviews with project managers, field observations, and literature studies to ensure the accuracy and completeness of the analysis results. The results indicate that anaerobic digestion and biogas combustion are the major contributors to emissions but also play a key role in reducing methane release by up to 60%. Optimization of digester management and utilization of digestate as organic fertilizer can further minimize additional impacts. Hence, biogas demonstrates substantial potential as a mitigation strategy to support net zero emissions in the dairy cattle sector.
Ablieieva, I., Geletukha, G., Kucheruk, P., Enrich Prast, A., Carraro, G., Berezhna, I., & Berezhnyi, D. (2022). Digestate potential to substitute mineral fertilizers: Engineering approaches. Journal of Engineering Sciences, 9(1), H1–H10.
Baumann, H., & Tillman, A.-M. (2004). The hitch hiker’s guide to LCA (Vol. 1).
Budiman, I., Muthahhari, R., Kaynak, C., Reichwein, F., & Zhang, W. (2018). Multiple challenges and opportunities for biogas dissemination in Indonesia. Indonesian Journal of Energy, 1(2), 46–60.
Esteves, E. M. M., Herrera, A. M. N., Esteves, V. P. P., & Morgado, C. do R. V. (2019). Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production, 219, 411–423.
Gkoltsiou, A., Athanasiadou, E., & Paraskevopoulou, A. T. (2021). Agricultural heritage landscapes of Greece: Three case studies and strategic steps towards their acknowledgement, conservation and management. Sustainability, 13(11), 5955.
Harjanto, T. R., Fahrurrozi, M., & Bendiyasa, I. M. (2012). Life cycle assessment pabrik semen PT Holcim Indonesia tbk. Pabrik Cilacap: Komparasi antara bahan bakar batubara dengan biomassa. Jurnal Rekayasa Proses, 6(2), 51–58.
Ishak, A. B. L., Takdir, M., & Wardi, W. (2019). Estimasi emisi gas rumah kaca (grk) dari sektor peternakan tahun 2016 di Provinsi Sulawesi Tengah. Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), 21(1), 51–58.
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas production and applications in the sustainable energy transition. Journal of Energy, 2022(1), 8750221.
Kang, M., Xu, L., Ji, J., & Zhu, X. (2022). Design and analysis of a high torque density hybrid permanent magnet excited vernier machine. Energies, 15(5), 1723.
Lamolinara, B., Pérez-Martínez, A., Guardado-Yordi, E., Fiallos, C. G., Diéguez-Santana, K., & Ruiz-Mercado, G. J. (2022). Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Management, 140, 14–30.
Meng, C., Ma, J., Qu, X., & Fu, J. (2023). Electrochemical catalyst 4-Acetamido-TEMPO oxidation degumming of scutched flax tow (SFT): Promoting of lignin depolymerization and restraining of cellulose degradation. Journal of Cleaner Production, 410, 137004.
Miettinen, P., & Hämäläinen, R. P. (1997). How to benefit from decision analysis in environmental life cycle assessment (LCA). European Journal of Operational Research, 102(2), 279–294.
Nasir, M. N., & Bengi, K. S. (2024). The energy mix dilemma in Indonesia in achieving net zero emissions by 2060. ASEAN Natural Disaster Mitigation and Education Journal, 2(1), 99–113.
Nugrahaeningtyas, E., Lee, J.-S., & Park, K.-H. (2024). Greenhouse gas emissions from livestock: sources, estimation, and mitigation. Journal of Animal Science and Technology, 66(6), 1083.
Pramono, A., Adriany, T. A., & Susilawati, H. L. (2020). Mitigation scenario for reducing greenhouse gas emission from rice field by water management and rice cultivars. Journal of Tropical Soils, 25(2), 53–60.
Rehl, T., & Müller, J. (2011). Life cycle assessment of biogas digestate processing technologies. Resources, Conservation and Recycling, 56(1), 92–104.
Reiter, G., & Lindorfer, J. (2015). Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology. The International Journal of Life Cycle Assessment, 20(4), 477–489.
Rocchi, L., Mancinelli, A. C., Paolotti, L., Mattioli, S., Boggia, A., Papi, F., & Castellini, C. (2021). Sustainability of rearing system using multicriteria analysis: Application in commercial poultry production. Animals, 11(12). https://doi.org/10.3390/ani11123483
Scheutz, C., & Fredenslund, A. M. (2019). Total methane emission rates and losses from 23 biogas plants. Waste Management, 97, 38–46.
Styles, D., Adams, P., Thelin, G., Vaneeckhaute, C., Chadwick, D., & Withers, P. J. A. (2018). Life cycle assessment of biofertilizer production and use compared with conventional liquid digestate management. Environmental Science & Technology, 52(13), 7468–7476.
Tonmoy, F. N., Cooke, S. M., Armstrong, F., & Rissik, D. (2020). From science to policy: Development of a climate change adaptation plan for the health and wellbeing sector in Queensland, Australia. Environmental Science & Policy, 108, 1–13.









