Analysis of Stock Price Prediction for PT Mayora Indah Tbk Using ARIMA and Prophet Models
Main Article Content
Tukiyat*
Ani Nuraini
Eko Sembodo
Dahlan Supriatna
Maya Sova
The instability of stock market prices necessitates the utilization of precise predictive models, with ARIMA and Prophet providing alternative methods for addressing patterns, seasonal variances, and changes in value. This study aims to compare the forecasting performance of ARIMA and Prophet models in predicting the stock price of PT Mayora Indah Tbk. (MYOR.JK) using daily closing price data obtained from Yahoo Finance, spanning the period from January 1, 2018, to May 2, 2025. ARIMA was employed for its robustness in handling stationary and linear time series, whereas Prophet was applied due to its flexibility in capturing nonlinear components, seasonal fluctuations, and sudden market changes. The models were developed and evaluated in RStudio, with accuracy measured using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The ARIMA (1,1,1) model produced a MAPE of 3.21% and white noise residuals, signifying reliable short-term predictions yet limited adaptability to complex long-run dynamics. Conversely, the Prophet model achieved a lower MAPE of 2.87%, exhibiting superior predictive accuracy, trend adaptability, and sensitivity to abrupt price movements. Overall, the findings indicate that Prophet outperforms ARIMA for daily stock price forecasting and underscore the importance of selecting appropriate models in financial time series analysis, while also encouraging future exploration of hybrid or deep learning-based approaches such as Long Short-Term Memory (LSTM) networks to further enhance prediction accuracy.
Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock price prediction using the ARIMA model. Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014, June, 106–112. https://doi.org/10.1109/UKSim.2014.67
Beaumont, C., Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1984). Forecasting: Methods and Applications. The Journal of the Operational Research Society, 35(1), 79. https://doi.org/10.2307/2581936
Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day.
Chandra, C., & Budi, S. (2020). Analisis Komparatif ARIMA dan Prophet dengan Studi Kasus Dataset Pendaftaran Mahasiswa Baru. Jurnal Teknik Informatika Dan Sistem Informasi, 6(2). https://doi.org/10.28932/jutisi.v6i2.2676
Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383. https://doi.org/10.2307/2325486
Hens, T., & Schenk-Hoppe, K. R. (2009). Handbook of Financial Markets: Dynamics and Evolution. North Holland.
Hermansah. (2024). Hybrid MODWT-ARMA Model for Indonesia Stock Exchange LQ45 Index Forecasting. Enthusiastic : International Journal of Applied Statistics and Data Science, 4(1), 51–57.
Hyndman, R. J. (2018). Forecasting: principles and practice. OTexts.
Khaira, U., Utomo, P. E. P., Suratno, T., & Gulo, P. C. S. (2021). Prediksi Indeks Harga Saham Gabungan (IHSG) Menggunakan Algoritma Autoregressive Integrated Moving Average (ARIMA). JUSS (Jurnal Sains Dan Sistem Informasi), 2(2), 11–17. https://doi.org/10.22437/juss.v2i2.8449
Laksma Pradana, B. (2025). Time Series Forecasting of LQ45 Stock Index Using ARIMA: Insights and Implications. Journal of Management, Accounting and Business Research (JMABR), 1(1), 27–40. https://doi.org/10.51170/jmabr.v4i.1.160
Malkiel, B. G. (2019). A random walk down Wall Street: the time-tested strategy for successful investing. WW Norton & Company.
Menculini, L., Marini, A., Proietti, M., Garinei, A., Bozza, A., Moretti, C., & Marconi, M. (2021). Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices. Forecasting, 3(3), 644–662. https://doi.org/10.3390/forecast3030040
Neyun, I. N. G., Sulandari, W., & Slamet, I. (2023). Hibrida Autoregresiive Integrated Moving Average dan Fuzzy Time Series Cheng untuk Prediksi Harga Saham Autoregresiive Integrated Moving Average and Fuzzy Time Series Cheng Hybrid for Predicting Stock Price. Jurnal Bumigora Information Technology (BITe), 5(2), 139–150. https://doi.org/10.30812/bite/v5i1.2972
Riady, S. R. (2023). Stock Price Prediction using Prophet Facebook Algorithm for BBCA and TLKM. International Journal of Advances in Data and Information Systems, 4(2), 1–8. https://doi.org/10.25008/ijadis.v4i2.1258
Santoso, R. S., & Dewi, F. K. S. (2024). Konfigurasi Model Prophet Untuk Prediksi Harga Saham Sektor Teknologi di Indonesia Yang Akurat. Jurnal Buana Informatika, 15(01), 50–58. https://doi.org/10.24002/jbi.v15i1.8634
Scott, S. L., & Varian, H. R. (2015). Bayesian variable selection for nowcasting economic time series. In Economic analysis of the digital economy (pp. 119–135). University of Chicago Press.
Sebastian Santoso, R., & Kartika Sari Dewi, F. (2024). Konfigurasi Model Prophet Untuk Prediksi Harga Saham Sektor Teknologi di Indonesia Yang Akurat. Jurnal Buana Informatika, 15(1), 50–58.
Suryawan, I. G. T., Putra, I. K. N., Meliana, P. M., & Sudipa, I. G. I. (2024). Performance Comparison of ARIMA, LSTM, and Prophet Methods in Sales Forecasting. Sinkron, 8(4), 2410–2421. https://doi.org/10.33395/sinkron.v8i4.14057
Susanti, R., & Adji, A. R. (2020). Analisis Peramalan IHSG Dengan Time Series Modeling Arima ( Analysis Of Indonesia Composite Index ( IHSG ) Forecasting With Arima Time Series Modeling ). 17(01), 97–106.
Tandelilin, E. (2017). Pasar modal manajemen portofolio & investasi. Yogyakarta: PT Kanisius.
Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45.
Yusrizal, Sudarno, & Ribkha. (2019). Effect of Eps, Per, Roa and Der Toward the Stock Price of Various Industrial Sector Companies Listed on Idx Periode 2013-2017. Kewirausahaan Dan Bisnis, 169(2), 169–180.











